首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, frost formation on a horizontal cold cylinder was investigated experimentally. An apparatus was designed and carried out on a physical model which was included an air tunnel and a cold cylinder exposed to humid air flow. It was found that the frost layers formed on the front and rear surfaces of the cylinder were thicker than the top surfaces where the flow separation was nearly or wholly initiated. The effects of air flow parameters such as flow Reynolds number, entrained air temperature, absolute air humidity and temperature of cylinder surface on the frost thickness and density formed over the cylinder were studied. In this paper, the dew point temperature of the inlet air was above the freezing point and also the earlier transition time was investigated.  相似文献   

2.
This paper proposes a mathematical model to predict the frost properties and heat and mass transfer within the frost layer formed on a cold plate. Laminar flow equations for moist air and empirical correlations for local frost properties are employed to predict the frost layer growth. Correlations for local frost density and effective thermal conductivity of the frost layer, derived from various experimental data, are expressed as a function of the various frosting parameters: the Reynolds number, frost surface temperature, absolute humidity and temperature of the moist air, cooling plate temperature, and frost density. The numerical results are compared with experimental data to validate the proposed model, and those agree well with the experimental data within a maximum error of 10%. Heat and mass transfer coefficients obtained from the numerical analyses are also presented. The results show that the model for the frost growth using the correlation of the heat transfer coefficient without considering the air flow has a limitation in its application.  相似文献   

3.
A physical model of frost layer growth and frost properties with airflow over a flat plate at subfreezing temperature was developed. Frost roughness was measured, and an empirical correlation for the average frost roughness was suggested. Heat and mass transfer coefficients were calculated using the modified Prandtl mixing-length scheme containing the effects of both frost roughness and turbulent boundary layer thickness. Frost thermal conductivity was theoretically analyzed by solving the combined equations of air equivalent conductivity and thermal conductivity of the frost inner layer. Based on the present model, heat and mass transfer coefficient, frost thermal conductivity, frost thickness, frost mass concentration and frost density with time and space were estimated. The model showed good agreement with the basic trends of the test data taken from other literature. Spatial and temporal changes of heat flux and frost surface temperature were also investigated.  相似文献   

4.
Frost formation and heat transfer on circular cylinders in cross-flow   总被引:1,自引:0,他引:1  
When humid air comes into contact with a surface whose temperature is below the dew point of water vapour in air and also below the freezing point, frost deposition takes place over the surface. Previous studies indicate that the heat transfer rate increases at the initial stages of deposition since the rough frost surface acts as a finned one. As the frost thickens, however, the insulating effect of the frost layer predominates resulting in a reduction in the heat transfer rate. This paper presents a transient model to predict the frosting process over a circular cylinder in a cross-flow of humid air. the transfer parameters are computed employing a numerical solution of the momentum, energy and diffusion boundary-layer equations along with the continuity equation, using a finite difference scheme. Empirical correlations for thermal conductivity and density are utilized for closure purposes. Model results are compared with existing experimental data and with numerical data of previous investigators and are found to agree well in the applicable temperature and humidity ranges of the frost density and conductivity correlations.  相似文献   

5.
This paper describes a field experimental investigation of the effects of frost formation on the performance of a low-temperature large-scale evaporator coil used in industrial refrigeration systems. A series of experiments were conducted to determine the in situ coil cooling capacity of the evaporator over time as frost builds on its surfaces. Field-measured quantities include inlet and outlet air temperatures, inlet and outlet air relative humidity, and air volume flow rate. These measurements provide a baseline set of experimental data that can be used to validate numerical models of industrial evaporators operating under frosting conditions.  相似文献   

6.
This study proposes dimensionless correlations for predicting the properties of frost formed on a cold plate. Frosting experiments are carried out to obtain the correlations with various environmental parameters including the air temperature, air velocity, absolute humidity, and cooling plate temperature. The thickness, density, surface temperature, effective thermal conductivity, average heat and mass transfer coefficients of the frost layer are correlated as functions of the Reynolds number, Fourier number, absolute humidity, and dimensionless temperature by using a dimensional analysis. The correlations proposed in this study agree well with the experimental data within a maximum error of 10%, and can be used to predict the average frost properties in the following ranges: the air temperature of 5–15 °C, air velocity of 1.0–2.5 m s−1, absolute humidity of 0.00322–0.00847 kg kga−1, and cooling plate temperature of −35–−15 °C.  相似文献   

7.
This study presents a mathematical model to predict the frosting behavior on a cold surface under turbulent flow. The model consists of the standard κε model for turbulent flow and the diffusion equation for the frost layer. The numerical results show that turbulent flow promotes the growth of the frost layer on the cold surface, compared to the laminar flow. Increase in air velocity has little effect on mass transfer under turbulent flow, while frost growth under laminar flow is influenced by the air velocity. With constant air humidity, the frost layer thickness increases with decreasing air temperature, while the relationship for the frost density is reversed. The effect of the air temperature on the mass flux is negligible, compared to the other frosting parameters.  相似文献   

8.
In this study, the heat and mass transfer characteristics of heat exchangers during frost formation process are analyzed numerically. Unsteady heat and mass transfer coefficients of the air side, heat transfer coefficient of the refrigerant side, air-frost layer interface temperature, the surface efficiency of the heat exchanger and the mass flow rate of the frost accumulated on the heat exchanger surface are calculated. The total conductivity (UA) and pressure drop of the heat exchanger are reported for different air inlet temperature, relative humidity, air mass flow rate and the refrigerant temperature.  相似文献   

9.
对一台空气源热泵空调器在不同环境条件下室外换热器的动态结霜性能进行了实验研究,分析了进风温、湿度对热泵空调器结霜量及霜层厚度的影响。实验中考虑了结霜引起的热泵系统蒸发温度及风机流量的变化,采用显微照相法测量翅片表面霜层厚度,结霜量则通过测量蒸发器进出口含湿量的方法来获得。实验结果表明,室外换热器结霜量随时间线性增长,而翅片表面霜层厚度则分为初始段、匀速增长段和快速增长段三个阶段;在结霜循环的最后20%~30%的快速增长段内霜层生长速率大大加快,可达匀速生长段霜层生长速率的2.4,3.3倍。对于不同的工况,蒸发器均在进风温度0~3℃附近时结霜最为严重,且相对湿度对霜层厚度的影响要大于对结霜量的影响。  相似文献   

10.
For providing good performance of dehumidifier and regenerator with certain dimensions, a new type of internally cooled/heated dehumidifier/regenerator based on the plate–fin heat exchanger (PFHE) was designed. To investigate the behavior of the new equipment, an experimental setup was established in an environment chamber with regulable temperature and humidity air. By the internally cooled dehumidification testing, effects of the cooling water temperature, the air flow rate and the desiccant temperature on the dehumidification performance and the cooling efficiency were presented. The behavior of internally cooled dehumidification process was compared with that of the adiabatic dehumidification process. The results suggested that the cooling efficiency decreased with the increasing of the cooling water temperature and desiccant with low temperature could bring more mass transfer coefficients. There is an optimal air flow rate to achieve the maximum absolute humidity decrease of the air. By the internally heated regeneration testing, effects of the air flow rate and the desiccant inlet temperature on the regeneration performance and air outlet parameters were discussed and also compared with those of the adiabatic regeneration process. It was concluded that the regeneration efficiency of internally heated regeneration was more than that of the adiabatic regeneration, and the internally heated regenerator could offer better thermal performance.  相似文献   

11.
Heat and mass transfer under frosting conditions   总被引:3,自引:0,他引:3  
The effect of frost formation on heat transfer between a test cylinder and its gaseous environment was studied experimentally. The main parameters discussed in the paper are: the total heat flux, the steady-state convective heat transfer coefficient, and the mass of frost adhering to the test cylinder. The emphasis of the paper is on the thermal conducivity of frost. The data indicate that the diffusion mechanisms of moisture transfer within the frost layer causes the frost density and thermal conductivity to increase with time. Frost thermal conductivity is a function of the local temperature and average density. The can be used by designers of low temperature systems with uninsulated surfaces.  相似文献   

12.
This paper numerically evaluates some of the parameters involved in modeling the process of frost formation on flat cold surfaces subject to the flow of humid air. The model employs one-dimensional transient formulation based upon the local volume averaging technique. The modeling process was validated by comparison with available experimental data. Numerical experiments were realized to determine the best initial values of the diffusivity, initial radius and geometry of the ice crystals. This model was applied to the known case of flow of humid air over a single flat cold plate to predict the frost temperature, density and thickness distribution along the flow direction and also the void fraction. The results were compared with available results in the literature. The model was then extended to solve the case of flow of humid air between two parallel cold plates for which there are no available results.  相似文献   

13.
In the present work Artificial Neural Network is used to predict frost thickness and density around a cooled horizontal circular cylinder having constant surface temperature under natural convection for different ambient conditions. The database for ANN generated from the experimental measurements. In the present work a multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth due to accurate and faster training procedure. Experimental measurements are used for training and testing the ANN approach and comparison is performed among the soft programming ANN and experimental measurements. It is observed that ANN soft programming code can be used more efficiently to determine frost thickness and density around a cold horizontal cylinder. Based on the developed ANN wide range of frost formation over various cylinder diameters are determined and presented for various conditions.  相似文献   

14.
水平冷面上霜晶生长规律的实验研究   总被引:3,自引:0,他引:3  
对水平铜冷面上的结霜过程进行了显微实验观察,实验结果表明:结霜过程基本上都经历了水珠生成、长大、冻结、初始霜晶生成、长大以及霜层成长等过程。根据霜晶的外观形状特点将初始霜晶分成了四大类,讨论了初始霜晶形状随冷面温度和空气相对湿度的变化规律,指出冷面温度是影响霜晶形状的主要因素,而空气的相对湿度对霜晶形状也有一定影响。  相似文献   

15.
低温冷风机结霜特性的研究及其融霜方法的改进   总被引:3,自引:0,他引:3  
以华中地区某禽类加工厂冻结间的冷风机为研究对象,建立数学模型,对结霜工况下冷风机运行特性进行了理论分析。模型和实验测得的霜层厚度的平均偏差8.99%,吻合较好。阐述了随着霜层的生长,空气冷却器的传热面积、传热系数以及空气侧压降的变化规律。进一步分析了冻结间内空气相对湿度、冷风机进口空气干球温度以及迎面风速等对霜层生长的影响。并遵循尽量减少初投资、节能、实用为选择改进的原则,结合企业生产工序及冻结间运行的实际情况,对原融霜方式提出改进方案。  相似文献   

16.
An experimental study is reported which investigates the melting of ice cylinders transverse to a warm humid flow, under controlled conditions in an air-conditioned wind tunnel. This work was initiated prior to a more general study of warm air defrosting of a complete heat pump evaporator. Tests were conducted with air at various temperatures, relative humidities and velocities. Similarly, the temperature of the core tube, on which the ice cylinders were mounted, was varied by alteration of the water-glycol mixture flowing through it. Two diameters of ice cylinder, 20 and 27 mm, were used. For core temperatures below the melting point of ice, the melting rate was shown to be a strong function of air humidity and temperature. With the core temperature above 0°C, the melting process was dominated by this factor so that air conditions were relatively unimportant.  相似文献   

17.
The defrosting of a heat-pump evaporator with warm air has been investigated experimentally under controlled conditions in an air-conditioned wind tunnel. The work was initiated to explore the possibility of defrosting an evaporator under conditions where a heat pump continues to perform heating duty. A four-row straight-fin heat exchanger was used, supported from below by a load transducer to measure its weight variation during both frost accumulation and removal. The rate of melting was determined as a function of air temperature, relative humidity and velocity. The removal from the evaporator surfaces of water produced by defrosting was found to be dependent on air velocity. Proposals are advanced for further experimental studies.  相似文献   

18.
In this paper a semi-empirical model describing heat and mass transfer on a cylinder surface in humid air cross flow under supersaturated frosting conditions is presented. The lack of psychrometric data in the supersaturated zone of the psychrometric chart has historically impeded the ability of researchers to accurately predict heat and mass transfer in supersaturated air. The work described in this paper has been partially made possible by developing a systematic procedure to compute the properties of supersaturated moist air, especially in the low temperature zone of the psychrometric chart. Development of such a capability will allow us to predict the amount of frost collected on a coil, the frost deposition and coil heat transfer rates, frost thickness and frost surface temperature, and other important coil frost parameters under supersaturated conditions.  相似文献   

19.
对低温罩表面结霜过程进行了数值模拟研究。通过能量和质量平衡方程建立了低温罩结霜的物理模型,考虑了霜层厚度增加的传质和传热过程。据此分析了来流空气的温度、相对湿度、速度及冷壁面温度对霜层表面温度和霜层厚度的影响。计算结果表明,来流空气的温度及冷壁面温度对结霜的影响较大,而来流空气的速度和相对湿度对结霜的影响则较小。最后指出了对低温罩在加注低温液体时采取隔热防霜措施的必要性。  相似文献   

20.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号