首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Evaporative condenser control in industrial refrigeration systems   总被引:2,自引:0,他引:2  
This paper is a result of a research project which focused on optimization of an existing industrial refrigeration system for a large two-temperature level cold storage distribution facility located near Milwaukee, Wisconsin. This system utilized a combination of single-screw and reciprocating compressors (each operating under single-stage compression), an evaporative condenser, and a combination of liquid overfeed and direct expansion evaporators. A mathematical model of the existing system was developed. The model was validated using experimental data recorded from the system. Subsequently, the model served as a tool to evaluate alternative system designs and operating strategies that lead to optimum system performance. The methods, analysis, and results presented in this paper focus on evaporative condenser sizing and head pressure control. Operating system head pressures that minimize the energy costs of the system were found to be a linear function of the outdoor wet-bulb temperature. A methodology for implementing the optimum control strategy is presented. Simulation results for the annual performance of the refrigeration system investigated in this project show a reduction in annual energy consumption by 11% as a result of the recommended design and control changes.  相似文献   

2.
Evaporative condenser is an energy efficient and environmentally friendly air conditioning equipment. This paper proposed an air conditioning system using dual independent evaporative condenser and investigated the cooling performance. Many factors, such as evaporator water inlet temperature, compressor frequency, air dry-bulb temperature, air velocity and water spray rate, which influenced the cooling performances of air conditioning system with evaporative condenser have been investigated. The results indicated that cooling capacity and coefficient of performance (COP) increased significantly with the increasing of evaporator water inlet temperature (12–25 °C), the air velocity (2.05–3.97 m s−1) and the water spray rate (0.03–0.05 kg m−1 s). However, COP decreased with the increasing ambient air dry-bulb temperature (31.2–35.1 °C) and the compressor frequency (50–90 Hz). Furthermore, the heat transfer coefficient (K0) was 232–409 W m−2 K−1 in different air velocity and water spray rate.  相似文献   

3.
This study presents a new mathematical model of heat and mass transfer processes in evaporative condensers. The model consists of four ordinary differential equations with their boundary conditions and some associated algebraic equations. The model was formulated for steady-state heat and mass transfer conditions. A simulation computer program based on the model was written. It was devised for heat calculations in condensers built from bare tubes. The quality of the model was calculated by comparing the results obtained by running the program with experimental results achieved by other authors. The computed results show a good degree of conformity with experimental results. The differences are less than 20% (but in one case, 30%). The computer program may be used to determine heat performance of evaporative condensers of horizontal in-line and staggered bundle systems (if Sq > 2dz).  相似文献   

4.
An adsorptive solar refrigerator was built and tested in May 1999 in Ouagadougou, Burkina-Faso. The adsorption pair is activated carbon + methanol. The adsorber is also the solar collector (2 m2, single glazed), the condenser is air-cooled (natural convection) and the evaporator contains 40 l of water that can freeze into ice. This amount of ice acts as a cold storage for the cold cabinet (available volume of 440 l). Elements such as valves and a graduated bottle are installed, but only for experimental purposes. Apart from these valves, and also ventilation dampers which are open at night time and closed at daytime, the machine does not contain any moving parts and does not consume any mechanical energy. Within the requirement of vacuum technology, the machine is relatively easy to manufacture, so that construction in Burkina-Faso is feasible. Experimental performance is presented in terms of gross solar COP. During the test period, irradiance were quite good (between 19 and 25 MJ m−2), but the ambient temperature was relatively warm (averagely 27.4 °C at sunrise and 37.4 °C at mid-afternoon). The experimental values of the gross solar COP lie between 0.09 and 0.13. Despite a warm climate, the performance of the machine compares favourably to previously published results.

Résumé

An adsorptive solar refrigerator was built and tested in May 1999 in Ouagadougou, Burkina-Faso. The adsorption pair is activated carbon + methanol. The adsorber is also the solar collector (2 m2, single glazed), the condenser is air-cooled (natural convection) and the evaporator contains 40 l of water that can freeze into ice. This amount of ice acts as a cold storage for the cold cabinet (available volume of 440 l). Elements such as valves and a graduated bottle are installed, but only for experimental purposes. Apart from these valves, and also ventilation dampers which are open at night time and closed at daytime, the machine does not contain any moving parts and does not consume any mechanical energy. Within the requirement of vacuum technology, the machine is relatively easy to manufacture, so that construction in Burkina-Faso is feasible. Experimental performance is presented in terms of gross solar COP. During the test period, irradiance were quite good (between 19 and 25 MJ m−2), but the ambient temperature was relatively warm (averagely 27.4 °C at sunrise and 37.4 °C at mid-afternoon). The experimental values of the gross solar COP lie between 0.09 and 0.13. Despite a warm climate, the performance of the machine compares favourably to previously published results.  相似文献   

5.
This study deals with an experimental investigation for a counter-current slug flow absorber, working with ammonia–water mixture, for significantly low solution flow rate conditions that are required for operating as the GAX (generator absorber heat exchanger) cycle. It is confirmed that the slug flow absorber operates well at the low solution flow rate conditions. From visualization results of the flow pattern, frost flow just after the gas inlet, followed by slug flow with well-shaped Taylor bubble, is observed, while dry patch on the tube wall are not observed. The liquid film at the slug flow region has smooth gas–liquid interface structure without apparent wavy motion. The local heat transfer rate is measured by varying main parameters, namely, ammonia gas flow rate, solution flow rate, ammonia concentration of inlet solution and coolant inlet conditions. The heat transfer rate while absorption is taking place is higher than that after absorption has ended. The absorption length is greatly influenced by varying main parameters, due to flow conditions and thermal conditions.  相似文献   

6.
This paper describes the development and operation of a rotating double effect absorption chiller, which uses an aqueous solution of mixed metal hydroxides as the absorbent. The design principles are outlined including the operation of the major components and the ways in which the integration of the processes has been achieved. The operation of the fluid management system is described. Experimental performance data are presented from laboratory testing for the machine operating as a chiller.  相似文献   

7.
A multi-temperature 4 drawer catering cabinet was designed to operate using a low-pressure receiver with capillary expansion to the separate evaporator in each drawer. Low-pressure receivers have been shown to be an effective way of allowing evaporators to operate in a fully flooded mode thus enabling more efficient use of the evaporator surface for heat transfer. If a low-pressure receiver is used in a refrigeration circuit the control of refrigerant flow into the evaporator is less critical as the expansion device is not responsible for preventing liquid returning to the compressor. Therefore, a capillary expansion device can be used effectively over a range of operating pressures. The system was shown to be effective at maintaining temperatures in the storage drawers during chilled, frozen and mixed storage temperature tests carried out to the EN441 test standard. The cabinet operated successfully at all conditions except when the heat load in each drawer was excessive (>400 W above base level heat load). In this case, refrigerant was found to back up in the condenser and the low-pressure receiver was empty of liquid refrigerant. A solution to this would be to allow controlled flow of refrigerant from the condenser to the low-pressure receiver at high condensing pressures.  相似文献   

8.
Gravity in multi-pass condensers affects the refrigerant flow rate distribution, owing to the gravitational pressure drop that occurs mainly in the U-bend tubes in fin and tube condensers with horizontal tubes. This effect was studied using an experimental approach. A condenser with two ‘nU’ circuits was selected, and the temperature variation of the refrigerant side was measured and compared along each circuit. The critical air velocity, which indicated the initiation of the gravity effect, was found for a given refrigerant flow rate. As the air velocity increased beyond the critical air velocity, the gravity effect (or mal-distribution of the refrigerant flow) developed further. Similarly, the critical refrigerant flow rate was also determined for a given air velocity. As the refrigerant flow rate decreased below the critical refrigerant flow rate, the gravity effect also developed further. The gravity-affected region was shown in the table with rows of air velocities and columns of refrigerant flow rates, and expressed using a single parameter for a given refrigerant flow circuit.  相似文献   

9.
For providing good performance of dehumidifier and regenerator with certain dimensions, a new type of internally cooled/heated dehumidifier/regenerator based on the plate–fin heat exchanger (PFHE) was designed. To investigate the behavior of the new equipment, an experimental setup was established in an environment chamber with regulable temperature and humidity air. By the internally cooled dehumidification testing, effects of the cooling water temperature, the air flow rate and the desiccant temperature on the dehumidification performance and the cooling efficiency were presented. The behavior of internally cooled dehumidification process was compared with that of the adiabatic dehumidification process. The results suggested that the cooling efficiency decreased with the increasing of the cooling water temperature and desiccant with low temperature could bring more mass transfer coefficients. There is an optimal air flow rate to achieve the maximum absolute humidity decrease of the air. By the internally heated regeneration testing, effects of the air flow rate and the desiccant inlet temperature on the regeneration performance and air outlet parameters were discussed and also compared with those of the adiabatic regeneration process. It was concluded that the regeneration efficiency of internally heated regeneration was more than that of the adiabatic regeneration, and the internally heated regenerator could offer better thermal performance.  相似文献   

10.
The consequences of the oil rejected by the compressor of a vapour-compression refrigeration system on the operation of the evaporator and condenser are analysed. The modelled prototype uses the mixture of HFC R410A and a synthetic polyolester (POE) oil. The rise of the amount of lubricant circulating in the system leads to a progressive change in the behaviour of the mixture of refrigerant and oil that, for the higher oil mass fraction, evolves like a zeotropic mixture. One also observes that the presence of lubricant is generally associated with a fall of the performances of the heat exchangers, except however in the evaporator where an optimum is observed when the quantity of oil is equal to 0.1% of the total mass of the mixture. Some conclusions are drawn about the choice of correlations for the calculation of the refrigerant side heat transfer coefficient in a plate evaporator.  相似文献   

11.
Jet-refrigeration cycles seem to provide an interesting solution to the increasing interest in environment protection and the need for energy saving due to their low plant costs, reliability and possibility to use water as operating fluid. A steam/steam ejector cycle refrigerator is investigated introducing a two-stage ejector with annular primary at the second stage. The steady_state refrigerator, exchanging heat with the water streams at inlet fixed temperatures at the three shell and tube heat exchangers, evaporator, condenser and generator, is considered as an open system. Heat transfer irreversibilities in the heat exchangers and external friction losses in the water streams are considered, ignoring the internal pressure drop of the vapor. A simulation program numerically searches the maximum COP at given external inlet fluid temperatures as a function of mass flows, dimensions and temperature differences in the heat exchangers. The code gives the ejector and heat exchangers design parameters.  相似文献   

12.
The rotary process presented here is designed for continuous operation and to use the concept of a heat regeneration cycle developed for solid sorption cold production systems. Based on the analysis of the thermodynamic cycle followed by the reagent, the system is modeled in the form of counter-flow heat exchangers in series. This allows an estimate of the energy performance of the process in terms of coefficient of performance (COP) and cold production capacity. It appears that for a given set of thermodynamic operating conditions, the number of transfer units (NTU) of the heat exchangers is the parameter, which conditions the value of the COP. A comparison between the rotary system by adsorption and by chemical reaction helps to select the ideal reagent according to the temperature level for cold production.  相似文献   

13.
In this article, a general definition of the process average temperature has been developed, and the impact of the various dissipative mechanisms on 1/COP of the chiller evaluated. The present component-by-component black box analysis removes the assumptions regarding the generator outlet temperature(s) and the component effective thermal conductances. Mass transfer resistance is also incorporated into the absorber analysis to arrive at a more realistic upper limit to the cooling capacity. Finally, the theoretical foundation for the absorption chiller T–s diagram is derived. This diagrammatic approach only requires the inlet and outlet conditions of the chiller components and can be employed as a practical tool for system analysis and comparison.  相似文献   

14.
The inclusion of an expander with work recovery provides two advantages for transcritical CO2 refrigeration cycles: the COP is improved and the exhaust pressure of the main compressor is lowered. Several designs of expanders have been proposed for this application and some prototypes have been tested already. In our laboratory a three-stage expander has been developed, which replaces the throttle valve of the normal refrigeration cycle and expands into the two-phase region. For optimum integration into the overall system it is proposed to install a vapour-liquid separator between the second and third stage of expansion. The vapour is guided back to the third expander stage whereas the liquid is supplied to the cooling stations via thermostatic or electronic expansion valves.  相似文献   

15.
The main purpose of this study is to investigate the performance of an autocascade refrigeration system using zeotropic refrigerant mixtures of R744/134a and R744/290. One of the advantages of this system is the possibility of keeping the highest pressure of the system within a limit by selecting the composition of a refrigerant mixture as compared to that in the vapor compression system using pure carbon dioxide. Performance test and simulation have been carried out for an autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Variations of mass flow rate of refrigerant, compressor power, refrigeration capacity, and coefficient of performance (COP) with respect to the mass fraction of R744 in R744/134a and R744/290 mixtures are presented at different operating conditions. Experimental results show similar trends with those from the simulation. As the composition of R744 in the refrigerant mixture increases, cooling capacity is enhanced, but COP tends to decrease while the system pressure rises.

Résumé

The main purpose of this study is to investigate the performance of an autocascade refrigeration system using zeotropic refrigerant mixtures of R744/134a and R744/290. One of the advantages of this system is the possibility in keeping the highest pressure of the system within a limit by selecting the composition of a refrigerant mixture as compared to that in the vapor compression system using pure carbon dioxide. Performance test and simulation have been carried out for an autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Variations of mass flow rate of refrigerant, compressor power, refrigeration capacity, and coefficient of performance (COP) with respect to the mass fraction of R744 in R744/134a and R744/290 mixtures are presented at different operating conditions. Experimental results show similar trends with those from the simulation. As the composition of R744 in the refrigerant mixture increases, cooling capacity is enhanced, but COP tends to decrease while the system pressure rises.  相似文献   


16.
The mathematical models of evaporative fluid coolers and evaporative condensers are studied in detail to perform a comprehensive design and rating analysis. The mathematical models are validated using experimental as well as numerical data reported in the literature. These models are integrated with the fouling model presented in an earlier paper, using the experimental data on tube fouling. In this paper, we use the fouling model to investigate the risk based thermal performance of these evaporative heat exchangers. It is demonstrated that thermal effectiveness of the evaporative heat exchangers degrades significantly with time indicating that, for a low risk level (p=0.01), there is about 66.7% decrease in effectiveness for the given fouling model. Furthermore, it is noted that there is about 4.7% increase in outlet process fluid temperature of the evaporative fluid cooler. Also, a parametric study is performed to evaluate the effect of elevation and mass flow rate ratio on typical performance parameters such as effectiveness for rating calculations while surface area for design calculations.  相似文献   

17.
The development of an absorption based miniature heat pump system is motivated by the need for removal of increasing rates of heat from high performance electronic chips such as microprocessors. The goal of the present study is to keep the chip temperature near ambient temperature, while removing 100 W of heat load. Water/LiBr pair is used as the working fluid. A novel dual micro-channel array evaporator is adopted, which reduces both the mass flux through each micro-channel, as well as the channel length, thus reducing the pressure drop. Micro-channel arrays for the desorber and condenser are placed in intimate communication with each other using a hydrophobic membrane. This acts as a common interface between the desorber and the condenser to separate the water vapor from LiBr solution. The escaped water vapor is immediately cooled and condensed at the condenser side. For direct air cooling of condenser and absorber, offset strip fin arrays are used. The performance of the components and the entire system is numerically evaluated and discussed.  相似文献   

18.
A thermodynamic model for a variable speed scroll compressor with refrigerant injection was developed using continuity, energy conservation and real gas equation. The model included energy balance in the low-pressure shell compressor, suction gas heating, motor efficiency, and volumetric efficiency considering gas leakages as a function of compressor frequency. The developed model was verified by comparing the predicted results for the no injection condition with the experimental data. The deviations of the predicted from the measured values were within 10% for approximately 90% of the experimental data. Based on the model, mass flow rate, suction gas heating, cooling capacity and power consumption of the compressor were estimated and analyzed as a function of frequency. The effects of refrigerant injection on the performance of the compressor were also discussed as a function of frequency, injection conditions, and injection geometry.

Résumé

A thermodynamic model for a variable speed scroll compressor with refrigerant injection was developed using continuity, energy conservation and real gas equation. The model included energy balance in the low-pressure shell compressor, suction gas heating, motor efficiency, and volumetric efficiency considering gas leakages as a function of compressor frequency. The developed model was verified by comparing the predicted results for the no injection condition with the experimental data. The deviations of the predicted from the measured values were within 10% for approximately 90% of the experimental data. Based on the model, mass flow rate, suction gas heating, cooling capacity and power consumption of the compressor were estimated and analyzed as a function of frequency. The effects of refrigerant injection on the performance of the compressor were also discussed as a function of frequency, injection conditions, and injection geometry.  相似文献   


19.
Evaporative cooling is used in industrial and air conditioning processes to reduce temperature in different fluids. Direct evaporation systems can lead to environmental problems such as Legionnaire's disease, and indirect systems reduce system efficiency.This work presents the manufacture, test bed set up and trials carried out on a ceramic evaporative cooling system which acts as a semi-indirect cooler. Depending on air characteristics, it may act as a sensible or enthalpic exchanger. The water cooled in a cooling tower, using the return air coming from the conditioned room (22 °C and 50% comfort conditions) goes through the ceramic pipes, exchanging sensible and latent heat with a current of outdoor air.The use of this recovery system is mainly in climates with a high temperature and humidity such as tropical environments where the system yields a decrease in supply air humidity, using the cooling power of return air.The tests presented show the system behaviour for various supply air conditions.  相似文献   

20.
The present paper discusses (a) the analysis of a wire-on-tube condenser under varying operating conditions of free convection using FEM, and (b) experimental verification of the performance of two wire-on-tube condensers in a retrofitted domestic refrigerator using refrigerant R-134a. The study is motivated by the desire to investigate if the wire-on-tube condensers used in R-12 based refrigerators could be used in a modified refrigerator using R-134a refrigerant. Experiments were conducted in a climate chamber under controlled and varying ambient temperatures and mass flow rates to determine the locations where phase change occurs and the degree of subcooling achieved. In terms of initial and final phase change point locations the predicted results agree with the experimental results to within ±10%. The analysis and the experiments also lead to the information about the adequacy of the number of tubes for complete condensation of the refrigerant vapour under given operating conditions. The methodology can be used as a design tool for the design of wire-on-tube condenser of a small refrigerator as well as the suitability of specific decommissioned condensers for use in a retrofitted refrigerator. It also indicates that R-12 based refrigerators using wire-on-tube condensers retrofitted with R-134a compressor and refrigerant deserve and warrant further studies for adoption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号