首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the problem of H model reduction for linear discrete-time singular systems. Without decomposing the original system matrices, necessary and sufficient conditions for the solvability of this problem are obtained in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint set. When these conditions are feasible, an explicit parametrization of the desired reduced-order models is given. Particularly, a simple LMI condition without rank constraint is derived for the zeroth-order H approximation problem. Finally, an illustrative example is provided to demonstrate the applicability of the proposed approach.  相似文献   

2.
In this paper, the problem of static output feedback control of a linear system is considered. The existence of a static output feedback control law is given in terms of the solvability of two coupled Lyapunov inequalities which result in a non-linear optimisation problem. However, using state-coordinate and congruence transformations and by imposing a block-diagonal structure on the Lyapunov matrix, we will see that the determination of a static output feedback gain reduces, for a specific class of plants, to finding the solution of a system of linear matrix inequalities. The class of plants considered is those which are minimum phase with a full row rank Markov parameter. The method is extended to incorporate H performance objectives. This results in a sub-optimal static H control law found by non-iterative means. The simplicity of the method is demonstrated by a numerical example.  相似文献   

3.
The problem of H filtering of stationary discrete-time linear systems with stochastic uncertainties in the state space matrices is addressed, where the uncertainties are modeled as white noise. The relevant cost function is the expected value, with respect to the uncertain parameters, of the standard H performance. A previously developed stochastic bounded real lemma is applied that results in a modified Riccati inequality. This inequality is expressed in a linear matrix inequality form whose solution provides the filter parameters. The method proposed is applied also to the case where, in addition to the stochastic uncertainty, other deterministic parameters of the system are not perfectly known and are assumed to lie in a given polytope. The problem of mixed H2/H filtering for the above system is also treated. The theory developed is demonstrated by a simple tracking example.  相似文献   

4.
In this paper we show that the H synthesis problem for a class of linear systems with asynchronous jumps can be reduced to a purely discrete-time synthesis problem. The system class considered includes continuous-time systems with discrete jumps, or discontinuities, in the state. New techniques are developed for the analysis of asynchronous time-varying hybrid systems which allow a particularly simple treatment, and provide an elementary proof for the sampled-data H problem.  相似文献   

5.
Sanjay  Geir   《Automatica》2001,37(12)
In this paper we address the asynchronous multi-rate sampled-data H synthesis problem. Necessary and sufficient conditions are given for the existence of a controller achieving the desired performance, and the problem is shown to be equivalent to a convex optimization problem expressed in the form of linear operator inequalities. In the case where the sample and hold rates are synchronous, these operator inequalities reduce to linear matrix inequalities, for which standard numerical software is available.  相似文献   

6.
In this paper, control of linear differential-algebraic-equation systems, subject to general quadratic constraints, is considered. This setup, especially, includes the H control problem and the design for strict passivity. Based on linear matrix inequality (LMI) analysis conditions, LMI synthesis conditions for the existence of linear output feedback controllers are derived by means of a linearizing change of variables. This approach is constructive: a procedure for the determination of controller parameterizations is given on the basis of the solution of the LMI synthesis conditions. A discussion of the possible applications of the presented results concludes the paper.  相似文献   

7.
This paper develops a new method for the synthesis of linear parameter-varying (LPV) controllers in discrete time. LPV plants under consideration have a linear fractional transformation (LFT) representation. In contrast to earlier results which are restricted to single-objective LPV problems, the proposed method can handle a set of H2/H specifications that can be defined channel-wise. This practically attractive extension is derived by using specific transformations of both the Lyapunov and scaling/multiplier variables in tandem with appropriate linearizing transformations of the controller data and of the controller scheduling function. It is shown that the controller gain-scheduling function can be constructed as an affine matrix-valued function in the polytopic coordinates of the scheduled parameter, hence is easily implemented on line. Finally, these manipulations give rise to a tractable and practical LMI formulation of the multi-objective LPV control problem.  相似文献   

8.
The paper addresses the problem of quadratic stabilisability with H-norm bound of uncertain discrete-time control-affine systems by norm-bounded controls. Both structured parameter uncertainties and unstructured exogenous disturbances are taken into account. The given definition of quadratic stabilisability is a generalisation of that used for linear systems so far. A necessary condition of the stabilisability is formulated. A state feedback control satisfying an a priori constraint is proposed for the solution of the formulated H problem. The proposed method may be applicable even in such cases when the linearisation technique cannot be used.  相似文献   

9.
This paper discusses the problem of robust H control for linear discrete time two-dimensional (2-D) singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainties. The purpose is the design of static output feedback controllers such that the resulting closed-loop system is acceptable, jump modes free, stable and satisfies a prescribed H performance level for all admissible uncertainties. A version of bounded realness of 2-D SRM is established in terms of linear matrix inequalities. Based on this, a sufficient condition for the solvability of the robust H control problem is solved, and a desired output feedback controller can be constructed by solving a set of matrix inequalities. A numerical example is provided to demonstrate the applicability of the proposed approach.  相似文献   

10.
This paper focuses on H filtering for a class of linear periodic systems with a certain type of norm-bounded time-varying parameter uncertainty which appears in both the state and output matrices. The problem addressed is the design of a linear periodic estimator that guarantees both the quadratic stability and and prescribed H performance on infinite horizon for the estimation error for all admissible parameter uncertainties. A solution to this problem is obtained via a Riccati equation approach.  相似文献   

11.
Reduced-order filtering for linear systems with Markovian jump parameters   总被引:1,自引:1,他引:1  
This paper addresses the reduced-order H filtering problem for continuous-time Makovian jump linear systems, where the jump parameters are modelled by a discrete-time Markov process. Sufficient conditions for the existence of the reduced-order H filter are proposed in terms of linear matrix inequalities (LMIs) and a coupling non-convex matrix rank constraint. In particular, the sufficient conditions for the existence of the zero-order H filter can be expressed in terms of a set of strict LMIs. The explicit parameterization of the desired filter is also given. Finally, a numerical example is given to illustrate the proposed approach.  相似文献   

12.
In this paper, the H model reduction problem for linear systems that possess randomly jumping parameters is studied. The development includes both the continuous and discrete cases. It is shown that the reduced order models exist if a set of matrix inequalities is feasible. An effective iterative algorithm involving linear matrix inequalities is suggested to solve the matrix inequalities characterizing the model reduction solutions. Using the numerical solutions of the matrix inequalities, the reduced order models can be obtained. An example is given to illustrate the proposed model reduction method.  相似文献   

13.
This paper focus on a stabilization problem for a class of nonlinear systems with periodic nonlinearities, called pendulum-like systems. A notion of Lagrange stabilizability is introduced, which extends the concept of Lagrange stability to the case of controller synthesis. Based on this concept, we address the problem of designing a linear dynamic output controller which stabilizes (in the Lagrange sense) a pendulum-like system within the framework of the H control theory. Lagrange stabilizability conditions for uncertainty-free systems and systems with norm-bounded uncertainty in the linear part are derived, respectively. When these conditions are satisfied, the desired stabilization output feedback controller can be constructed via feasible solutions of a certain set of linear matrix inequalities (LMIs).  相似文献   

14.
This paper deals with the problem of H observer design for a class of uncertain linear systems with delayed state and parameter uncertainties. This problem aims at designing the linear state observers such that, for all admissible parameter uncertainties, the observation process remains robustly stable and the transfer function from exogenous disturbances to error state outputs meets the prespecified H norm upper bound constraint, independently of the time delay. The time delay is assumed to be unknown, and the parameter uncertainties are allowed to be norm-bounded and appear in all the matrices of the state-space model. An effective matrix inequality methodology is developed to solve the proposed problem. We derive the conditions for the existence of the desired robust H observers, and then characterize the analytical expression of these observers in terms of some free parameters. A numerical example demonstrates the validity and applicability of the present approach.  相似文献   

15.
For a linear time invariant system, the infinity-norm of the transfer function can be used as a measure of the gain of the system. This notion of system gain is ideally suited to the frequency domain design techniques such as H optimal control. Another measure of the gain of a system is the H2 norm, which is often associated with the LQG optimal control problem. The only known connection between these two norms is that, for discrete time transfer functions, the H2 norm is bounded by the H norm. It is shown in this paper that, given precise or certain partial knowledge of the poles of the transfer function, it is possible to obtain an upper bound of the H norm as a function of the H2 norm, both in the continuous and discrete time cases. It is also shown that, in continuous time, the H2 norm can be bounded by a function of the H norm and the bandwidth of the system.  相似文献   

16.
On control for linear systems with interval time-varying delay   总被引:1,自引:1,他引:1  
Xiefu  Qing-Long   《Automatica》2005,41(12):2099-2106
This paper deals with the problem of delay-dependent robust H control for linear time-delay systems with norm-bounded, and possibly time-varying, uncertainty. The time-delay is assumed to be a time-varying continuous function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, and no restriction on the derivative of the time-varying delay is needed, which allows the time-delay to be a fast time-varying function. Based on an integral inequality, which is introduced in this paper, and Lyapunov–Krasovskii functional approach, a delay-dependent bounded real lemma (BRL) is first established without using model transformation and bounding techniques on the related cross product terms. Then employing the obtained BRL, a delay-dependent condition for the existence of a state feedback controller, which ensures asymptotic stability and a prescribed H performance level of the closed-loop systems for all admissible uncertainties, is proposed in terms of a linear matrix inequality (LMI). A numerical example is also given to illustrate the effectiveness of the proposed method.  相似文献   

17.
The problem of finding bounds on the H-norm of systems with a finite number of point delays and distributed delay is considered. Sufficient conditions for the system to possess an H-norm which is less or equal to a prescribed bound are obtained in terms of Riccati partial differential equations (RPDE’s). We show that the existence of a solution to the RPDE’s is equivalent to the existence of a stable manifold of the associated Hamiltonian system. For small delays the existence of the stable manifold is equivalent to the existence of a stable manifold of the ordinary differential equations that govern the flow on the slow manifold of the Hamiltonian system. This leads to an algebraic, finite-dimensional, criterion for systems with small delays.  相似文献   

18.
In this paper, we design an H controller for a class of lower-triangular time-delay systems. Backstepping is applied to construct an explicit feedback controller, and the closed-loop system maintains internal stability and an L2-gain from the disturbance input to the output. The design is delay-dependent. Simulations on an example system demonstrate the good performance of the proposed design.  相似文献   

19.
This paper deals with robust, polytopic, probabilistic H analysis and state-feedback synthesis of linear systems and focuses on the performance distribution over the uncertainty region (rather than on the performance bound). The proposed approach allows different disturbance attenuation levels (DALs) at the vertices of the uncertainty polytope. It is shown that the mean disturbance attenuation level (DAL) over an uncertain parameters-box is the average of the DALs at the vertices, if each parameter has an independent, symmetrical, centered probability density function. In such a (most common) case, the mean DAL over the uncertain parameters-box can be optimized by minimizing the sum of the DALs at the vertices. The standard deviation of the DAL over the uncertain parameters-box is also addressed, and a method to minimize this standard deviation is shown. A new robust H state-feedback synthesis theorem is given; it is based on a recent, most efficient analysis method and applies the proposed multiple-vertex-DALs approach. A state-feedback design example utilizing the latter theorem shows that a control design which minimizes the sum of the vertex-DALs leads to a better actual closed-loop performance than a similar design which minimizes only the bound of the DAL over the uncertainty polytope. The comparison is based on the statistics of a population of closed-loop ‘point-wise’ H-norms created by a Monte-Carlo mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号