首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tribological characteristics of polymer-based solid lubricant coatings under frictional stressing in vacuum at 293, 120 or 77 K were studied. Vacuum-friction apparatus with cryogenic pumps and low-temperature tribometer designed at SR&DB of ILTP&E was used for sliding tests. It was found that the coefficient of friction is somewhat higher at low than at room temperatures. The effect of temperature decrease on the wear life of solid lubricant coatings is ambiguous and determined by the direction of changes in physical and mechanical characteristics of a solid lubricant coating under cooling and by the rate of the process of a binder tribodestruction.  相似文献   

2.
In a cryogenic environment components with interacting surfaces in relative motion (tribosystems) like bearings, seals and valves often generate undesired heat and experience high wear. Because conventional lubricants like oils or greases cannot be used in this temperature range, solid lubricants or materials with good frictional properties in unlubricated operation must be used. To test the suitability of conventional and advanced materials for tribosystems in this extreme environment and to obtain reliable materials data, model friction tests at low temperatures are performed. In most of the tests the samples are in ball-on-disc-configuration but various methods for cooling, loading, and measurement are applied. As an example the test results for amorphous carbon coatings in the temperature range 10–77 K are presented. These coatings can be suitable for cryogenic tribosystems, but their behaviour strongly depends on the composition and deposition method.  相似文献   

3.
The work presents data on friction and wear behaviour of pin-on-disc pairs with superhard diamond-like carbon (DLC) coatings and hard coatings of zirconium nitride (ZrN) and titanium nitride (TiN) in liquid nitrogen with loads of 2.5 and 10 N and sliding speed of 0.06 m/s. It is shown that at cryogenic temperatures the friction coefficients of pairs of two types of DLC coatings obtained by vacuum-arc deposition of filtered high-speed carbon plasma fluxes depend to a great deal on the mechanical properties of the coatings defined by predominant sp2 or sp3 hybridization of valence electrons. A friction coefficient of 0.76 was observed for friction pairs of superhard (90 GPa) DLC coatings having properties similar to those of diamond. For “softer” DLC coatings of 40 GPa and properties similar to those of graphite the friction coefficient shows lower values (0.24–0.48) dependent on normal load and counterbody material. The DLC coatings obtained by the filtered arc technology exhibit good wear resistance and have strong adhesion to the substrate under friction in liquid nitrogen. With a normal load of 10 N under cryogenic temperature a low wear rate (of the order of 7.2×10−4 nm/cycle) was found for superhard DLC coatings. The friction coefficient of pairs with hard ZrN and superhard DLC coatings on steel discs was revealed to be linearly dependent on the counterbody material hardness between 20 and 100 GPa. The hardness of the pin was varied by means of depositing TiN or DLC coatings and also by using high-hardness compounds (boron nitride and synthetic diamond). Proceeding this way can be promising since it offers the possibility of creating low-temperature junctions of required friction properties.  相似文献   

4.
In the present study, hybrid friction materials were manufactured using ceramic and basalt fibers. Ceramic fiber content was kept constant at 10 vol% and basalt fiber content was changed between 0 to 40 vol%. Mechanical properties and friction and wear characteristics of friction materials were determined using a pin-on-disc type apparatus against a cast iron counterface in the sliding speeds of 3.2–12.8 m/s, disc temperature of 100–350 °C and applied loads of 312.5–625 N. The worn surfaces of the specimens were examined by SEM. Experiments show that fiber content has a significant influence on the mechanical and tribological properties of the composites. The friction coefficient of the hybrid friction materials was increased with increasing additional basalt fiber content. But the specific wear rates of the composites decreased up to 30 vol% fiber content and then increased again above this value. The wear tests showed that the coefficient of friction decreases with increasing load and speed but increases with increasing disc temperature up to 300 °C. The most important factor effecting wear rate was the disc temperature followed by sliding speed. The materials showing higher specific wear rates gave relatively coarser wear particles. XRD studies showed that Fe and Fe2O3 were present in wear debris at severe wear conditions which is indicating the disc wear.  相似文献   

5.
The unlubricated wear behaviour of explosive shock treated and, subsequently plasma nitrided Ti–6Al–4 V alloy was studied using a ball-on-disc wear tester. Plasma nitriding was carried out at three different temperatures (700, 800 and 900 °C) for 3, 6, 9 and 12 h. Plasma nitriding after explosive shock treatment enabled a reduction in the wear rate of two orders of magnitude. Detailed investigations of this improved wear performance dependent on the nitriding temperature and time were carried out. The friction and wear data showed a clear breakthrough transition from the nitrided layer to the core of the Ti–6Al–4 V alloy matrix. The lowest wear volume was obtained for the sample, nitrided at 900 °C for 12 h, especially at loads of 2.5, 5 and 7.5 N. Obviously, the hard nitride layers were intimately associated with low wear rate, providing a smooth low friction surface. The coefficient of friction reduced from 0.46 to 0.2 due to a thick and hard compound layer resulting from a high nitrogen diffusion rate caused by explosive shock treatment that expected to increase point defects in the alloy. Detailed examination of the wear tracks showed that plasma nitriding changes the mechanism of wear from one of adhesion for untreated Ti–6Al–4 V to both delamination and mild abrasive.  相似文献   

6.
ABSTRACT

Cryogenic machining is considered an environmentally safe alternative to conventional machining where cutting fluid is used. In cryogenic machining, liquid nitrogen (LN2) is well recognized as an effective coolant due to its low temperature, however, its lubrication effect is less well known. Our previous studies of the change in cutting forces, tool wear, chip microstructure, and friction coefficient indicate a possible lubrication effect of LN2. This paper proposes two mechanisms on how LN2 can provide lubrication in the cutting process. To verify these proposed LN2 mechanisms and distinguish them, idealized disk-flat contact tests were performed. A low temperature can alter the material properties and change the friction coefficient between the specimens. However, from the test results, this lubrication mechanism was dependent on the material pairs. An uncoated carbide insert with a low carbon steel or titanium alloy disk test showed reduction of friction under LN2 cooling, but a coated insert increased the friction force. LN2 injection to form a physical barrier or hydrodynamic effect between two bodies is always effective in reducing the friction force.  相似文献   

7.
Novel poly(phthalazinone ether sulfone ketone) (PPESK) resins have become of great interest in applications such as bearing and slider materials. In this paper, dry sliding wear of polytetrafluoroethylene (PTFE) and graphite-filled PPESK composites against polished steel counterparts were investigated on a block-on-ring apparatus at the same sliding velocities and different loads. The results indicated that the addition of 5–25 wt% PTFE and 5–30 wt% graphite contribute to an obvious improvement of tribological performance of PPESK at room temperature. Worn surfaces were investigated using a scanning electron microscope (SEM). As a result, the friction coefficient and wear rate of the PPESK composites decreased gradually with addition of fillers. A moderately low friction coefficient and specific wear rate were reached when the filler contents were above 20 wt%. The mechanical properties of PPESK composites were also investigated. The tensile and impact strength of PPESK composites decrease slightly as the addition of fillers contents were below 15 wt%.  相似文献   

8.
Hot pressed silicon nitride that was exposed to high (90%) and low (32%) relative humidity was examined in ball-on-disc geometry against cemented carbide ball at various normal loads. The study indicated that Si3N4 tested at high R.H. gave less specific wear rate compared with Si3N4 at low R.H. The friction coefficient of Si3N4−WC-6% Co tribopairs was found in the range of 0.32–0.39 and 0.05–0.17 at low humidity and high humidity respectively. It is suggested that adsorbed moisture markedly affected the wear and friction properties of silicon nitride.Following the tests, SEM was used to elucidate the wear mechanism and particularly to delineate the effects of relative humidity on the wear and friction. SEM micrographs showed that the main wear mechanism at low relative humidity (32%) was caused by mechanical wear including abrasive grooves, large holes and polishing, whereas at high relative humidity (90%) the main mechanism was highly influenced by a tribochemical reaction related to the moisture adsorption from the environment. It is concluded that the removal of lubricious tribolayer was occurred by delamination induced crack propagation.  相似文献   

9.
Transition metal nitrides like CrN and TiN are widely used in automotive applications due to their high hardness and wear resistance. Recently, we showed that a multilayer architecture of CrN and TiN, deposited using the hybrid—high power impulse magnetron sputtering (HIPIMS) and direct current magnetron sputtering (DCMS)—HIPIMS/DCMS deposition technique, results in coatings which indicate not only increased mechanical and tribological properties but also friction coefficients in the range of diamond-like-carbon coatings when tested at RT and ambient air conditions. The modulated pulsed power (MPP) deposition technique was used to replace the HIPIMS powered cathode within this study to allow for a higher deposition rate, which is based on the complex MPP pulse configuration. Our results on MPP/DCMS deposited CrN/TiN multilayer coatings indicate excellent mechanical and tribological properties, comparable to those obtained for HIPIMS/DCMS. Hardness values are around 25 GPa with wear rates in the range of 2 × 10−16 Nm/m3 and a coefficient of friction around 0.05 when preparing a superlattice structure. The low friction values can directly be correlated to the relative humidity in the ambient air during dry sliding testing. A minimum relative humidity of 13% is necessary to guarantee such low friction values, as confirmed by repeated tests, which are even obtained after vacuum annealing to 700 °C. Our results demonstrate that the co-sputtering of high metal ion sputtering techniques and conventional DC sputtering opens a new field of applications for CrN/TiN coatings as high wear resistance and low friction coatings.  相似文献   

10.
采用焦炭、MoS2和石墨作为减摩剂制备树脂基摩擦材料,通过正交试验和极差分析法,研究3种减摩剂对材料摩擦磨损性能的影响及其协同作用规律。结果表明:在实验用量范围内,焦炭能够提高材料整体摩擦因数,降低材料总磨损率;MoS2能够降低材料中低温摩擦因数,提高高温摩擦因数,但材料的总磨损上升;石墨能够降低材料整体摩擦因数,对材料总磨损率影响不明显。以材料摩擦因数标准差为实验指标时,发现3种减摩剂之间存在强烈的协同作用,且作用程度随着温度的升高而加强,其中焦炭和石墨的协同作用最为强烈;以材料总磨损率为实验指标时,发现3种减摩剂之间的协同作用在中低温下变化趋势一致,在高温下变化趋势不同。  相似文献   

11.
Operation of a low wear (2 × 10?5 mm3/(N-m)), low contact resistance copper sliding electrical contact was demonstrated. The wear rate of a lightly loaded copper–beryllium metal fiber sliding on a polished copper counterface was insensitive to (DC) current density values as great as 440 A/cm2 (in a brush positive or anodic configuration). Low wear and relatively low friction (μ  0.2 to 0.3) was achieved by operating the contact immersed in a liquid medium consisting of a hydrofluoroether with helium cover gas, inhibitingoxidationand providing cooling of the contact. Similar experiments performed in liquid mediums of ultrapure water and dilute (3%) hydrogen peroxide show an order of magnitude increase in wear rate and provide further insight on the role of electrochemically enhanced oxidation and the degraded contact resistance and tribological behavior of non-noble sliding electrical contacts in general. In contrast to high current density slidingin hydrofluoroether, an order of magnitude greater wear rate was observed for similar sliding conditionsin hydrogen peroxide or water without the aid of externally supplied electric potential. A conceptual model is proposed correlatingthe rate of brush wear to fatigue strength and electrochemically enhanced oxidation as a result of high current density transport through the contact. A mathematical expression was derived to calculate the approximate wear volume of a single fiber laterally contacting a slip-ring, based on direct measurement of the wear scar geometry.  相似文献   

12.
Wear and friction behavior of slider materials at cryogenic temperature is important to the development of seals and bearings for missile powerplants. Data were obtained in liquid nitrogen (?320°F) with a series of molded and extruded polytetrafluoroethylene (PTFE) compositions containing various filler materials. A 3/16-in. radius rider specimen (PTFE materials) was caused to slide in a circumferential path on the flat surface of a rotating -in. diameter disk specimen (usually type 304 stainless steel). The sliding velocity was usually 2300 ft per min and the load was 1000 grams.

As compared with reference steels and carbons used in conventional seals and bearings, the filled PTFE compositions gave low wear and friction (friction coefficients from 0.06 to 0.13) in liquid nitrogen. Several extruded compositions have particular promise for seal and bearing materials. An extruded glass-filled material gave wear and friction that was essentially unaffected by sliding velocities to 6000 ft per min.  相似文献   

13.
Simulations of the dynamic processes in micro contacts with the Method of Movable Cellular Automata (MCA) show that their common feature is formation of a boundary layer where intensive plastic deformation and mixing processes occur. The boundary layer is well localized and does not spread to deeper layers. We call this layer a ‘quasi-fluid layer’. The thickness of the boundary layer is roughly proportional to the viscosity of solid. This parameter thus should play an important role in determining the wear rate of materials in friction.To better understand the physical nature of the dynamic surface layers, we consider a simplified model of a solid consisting of many thin sheets, interacting with each other according to a ‘friction law’ of Coulomb type. A quasi-fluid layer is always developing if the ‘friction law’ does allow a bi-stability in some range of stresses with one static and one dynamic state at the same stress.The existence of the boundary layer motivates us to change the existing approach to calculating wear in frictional contacts. The wear should be understood not as ‘fracture’ but as ‘mass transport out of friction zone’. The process of stochastic transport of wear particles in the closed friction zone is at the same time the main mechanism of development of surface topography.A very important fact is that the conditions for appearance of a quasi-fluid layer depend on the minimal size of structural elements of the medium, which means that this effect cannot be principally described in the frame of a continuum model.  相似文献   

14.
Cryogenic machining is considered an environmentally safe alternative to conventional machining where cutting fluid is used. In cryogenic machining, liquid nitrogen (LN2) is well recognized as an effective coolant due to its low temperature, however, its lubrication effect is less well known. Our previous studies of the change in cutting forces, tool wear, chip microstructure, and friction coefficient indicate a possible lubrication effect of LN2. This paper proposes two mechanisms on how LN2 can provide lubrication in the cutting process. To verify these proposed LN2 mechanisms and distinguish them, idealized disk-flat contact tests were performed. A low temperature can alter the material properties and change the friction coefficient between the specimens. However, from the test results, this lubrication mechanism was dependent on the material pairs. An uncoated carbide insert with a low carbon steel or titanium alloy disk test showed reduction of friction under LN2 cooling, but a coated insert increased the friction force. LN2 injection to form a physical barrier or hydrodynamic effect between two bodies is always effective in reducing the friction force.  相似文献   

15.
In a cryogenic environment, components like bearings with interacting surfaces in relative motion (tribosystems) often generate undesired heat and experience high wear. Because the properties of conventional bearing materials like stainless steel cannot be applied to this temperature range, the PVD coating based on metal–metal pairs with better frictional properties must be employed. To test the suitability of the Ni–Cu–Ag-based PVD coatings of hybrid bearings for liquid rocket engine turbopumps and to obtain reliable coating material data in the extreme environment, the tribological behaviors of coatings under the cryogenic fluid (liquid oxygen and liquid nitrogen) and water lubricated conditions are studied, respectively. In the paper, the specimens are in a vibrocryotribometer with the ball-on-plane contact type, and various running conditions in terms of lubricants, contacting loading, and contacting velocity are examined. The simulated experiment for testing the actual tribological performance of Ni–Cu–Ag-based PVD coatings for hybrid bearings is tested. The results of the tests indicate that the coatings can be suitable for cryogenic tribosystems of turbopumps. In the cryogenic environment, the volume wear rate of coatings increases rapidly with the contacting loading, but 15 min later, the volume wear volume of coatings turns into 2.5–15×10−4 mm3. Besides, under the liquid oxygen condition in simulating the liquid rocket engine turbopumps environment, the friction coefficients are 0.03–0.1.  相似文献   

16.
Multifunctional tribological coatings rely on combinations of materials to improve properties, such as lubricity and wear resistance. For example, some polymer composites exhibit favorable tribological performance as solid lubricants. Here, classical molecular dynamics simulations are used to investigate the tribological behaviors of a mixed system of polyethylene (PE) sliding over polytetrafluoroethylene (PTFE) with the results compared with the sliding of the relevant homogeneous systems. In particular, oriented cross-linked PTFE and PE surfaces are slid in several relative sliding directions such that the surface chains are in-registry or out-of-registry and at various applied normal loads. The simulation results quantify the ways in which the mixed PTFE–PE system behaves differently than either of the homogeneous systems due to the lack of interlocking phases at the interface. These findings are compared with experimental production of polyetheretherketone (PEEK)–PTFE composites that have unusually low wear rates of 7.0 × 10−8 mm3/Nm, coupled with a steady, low friction coefficient of μ = 0.11 for over two million sliding cycles. The simulation results explain the atomic-scale origins of the frictional properties of this composite.  相似文献   

17.
In this study, albumin or γ-globulin, both of which are included in natural synovial fluid, was used as an additive into lubricants to investigate the ability to reduce the friction for poly(vinyl alcohol) hydrogel in mixed lubrication. It was found from a measurement in circular dichroism that albumin contains a large amount of α-helix structure and γ-globulin contains a large amount of β-sheet structure. The lubricant containing only albumin showed low friction compared to the lubricant containing only γ-globulin. The effect of protein boundary film was clarified by changing lubricant. Albumin kept the friction low after changing from γ-globulin used at initial rubbing, but γ-globulin increased the friction after changing from albumin at initial rubbing. From a sliding distance of 600 m, albumin showed lower friction but γ-globulin showed higher friction. Therefore, in the case of friction decreasing, γ-globulin forms a tight adsorbed layer and subsequently albumin forms a layer with low shearing strength. Hence, it is important to apply the adsorption layer of γ-globulin at the bottom and make a layered structure composed of albumin and γ-globulin to reduce both friction and wear.  相似文献   

18.
Two grades of WC–10 wt.%Co cemented carbide with or without addition of Cr3C2/VC grain growth inhibitor during liquid phase sintering were produced with the goal to investigate their reciprocating sliding friction and wear behaviour against WC–6 wt.%Co cemented carbide under unlubricated conditions. The tribological characteristics were obtained on a Plint TE77 tribometer using distinctive normal contact loads. The generated wear tracks were analyzed by scanning electron microscopy and quantified topographically using surface scanning equipment. The post-mortem obtained wear volumes were compared to the online assessed wear. Correlations between wear volume, wear rate and coefficient of friction on the one hand and sliding distance and microstructural properties on the other hand were determined, revealing a significant influence of Cr3C2/VC on the friction characteristics and wear performance.  相似文献   

19.
Dense 8 mol% CuO doped 3Y-TZP ceramics prepared by pressureless sintering at 1500 °C exhibits a good wear-resistance (specific wear rate k < 10−6 mm3 N−1 m−1) and promisingly low friction (coefficient of friction f = 0.2–0.3) when sliding against an alumina ball under unlubricated conditions. It was recognized that a self-lubricating mechanism is the most important contribution to the reduction of friction. During operation of the tribosystem, a soft interfacial patchy layer is generated in the contact area. As confirmed by calculations, based on a deterministic friction model, this soft interfacial patchy layer reduces friction. It was demonstrated that the presence of copper oxide is important for the formation of such an interfacial layer. The mechanism of the transition from mild to severe wear was also investigated. Detachment of a top layer in the wear track was proven to be the main reason for this tribological change.  相似文献   

20.
The friction and wear behavior of sialon ceramics sliding against steel and lubricated by perfluoropolyethers (PFPE), tetrakis (3-trifluoromethylphenoxy)-bis(4-fluoro-phenoxy)-cyclotriphosphazene (X-1P) and ionic liquid (1-methyl-3-octylimidazolium tetrafluoroborate, coded as L108) were investigated. It was found that the three fluorine-containing lubricants reduced friction coefficient and wear volume effectively. The effectiveness of the three lubricants in reducing wear volume could be ranked as L108>X-1P>PFPE. The antiwear films mainly consisting of organic oxyfluoride or carbonfluoride species and silicon fluoride are all observed for the three lubricants, while the degradation of PFPE during friction might account for the higher wear volume therewith. The lowest friction coefficient 0.065 was recorded for L108 under load of 0.5–400 N. This is dependent on the physically adsorbed ionic liquid on the rubbing surface and the formation of BN under the harsh conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号