首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is established that a SISO linear stabilizable and detectable system subject to output saturation can be semi-globally stabilized by linear output feedback if all its invariant zeros are in the closed left-half plane, no matter where the open loop poles are. This result complements a recent result that such systems can always be globally stabilized by discontinuous nonlinear feedback laws, and can be viewed as dual to a well-known result: a linear stabilizable and detectable system subject to input saturation can be semi-globally stabilized by linear output feedback if all its poles are in the open left-half plane, no matter where the invariant zeros are.  相似文献   

2.
Semi-global finite-time observers for nonlinear systems   总被引:5,自引:0,他引:5  
Yanjun  Xiaohua   《Automatica》2008,44(12):3152-3156
It is well known that high gain observers exist for single output nonlinear systems that are uniformly observable and globally Lipschitzian. Under the same conditions, we show that these systems admit semi-global and finite-time converging observers. This is achieved with a derivation of a new sufficient condition for local finite-time stability, in conjunction with applications of geometric homogeneity and Lyapunov theories.  相似文献   

3.
A simple observer is proposed for a large class of MIMO nonlinear systems which includes many physical models. The main characteristic of the proposed observer lies in the easiness of its implementation and calibration. Indeed, the gain of this observer does not necessitate the resolution of any dynamical system and its expression is given. Moreover, its calibration is achieved through the choice of a single parameter. A simulation example is given in order to illustrate the performance of the proposed observer.  相似文献   

4.
The extended state observer (ESO) is a key part of the active disturbance rejection control approach, a new control strategy in dealing with large uncertainty. In this paper, a nonlinear ESO is designed for a kind of lower triangular nonlinear systems with large uncertainty. The uncertainty may come from unmodeled system dynamics and external disturbance. We first investigate a nonlinear ESO with high constant gain and present a practical convergence. Two types of ESO are constructed with explicit error estimations. Secondly, a time varying gain ESO is proposed for reducing peaking value near the initial time caused by constant high gain approach. The numerical simulations are presented to show visually the peaking value reduction. The mechanism of peaking value reduction by time varying gain approach is analyzed.  相似文献   

5.
This work proposes the use of a new exponential nonlinear observer for the purpose of parametric identification and synchronization of chaotic systems. The exponential convergence of the observer is guaranteed by a persistent excitation condition. This approach is shown to be suitable for a wide variety of chaotic systems. In order to illustrate the observer design procedure, several examples with simulation results are presented.  相似文献   

6.
In this paper the authors provide a solution to the noise sensitivity of high-gain observers. The resulting nonlinear observer possesses simultaneously (1) extended Kalman filter’s good noise filtering properties, and (2) the reactivity of the high-gain extended Kalman filter with respect to large perturbations.The authors introduce innovation as the quantity that drives the gain adaptation. They prove a general convergence result, propose guidelines to practical implementation and show simulation results for an example.  相似文献   

7.
Unmodeled dynamics exist in almost all applications of observers due to the impossibility of using exact and detailed models. It is highly desired that the observers can dominate the effects of unmodeled dynamics independently to prevent the state estimations from diverging and to get the precise estimations. Based on adaptive nonlinear damping, this paper presents a robust adaptive observer for multiple-input multiple-output nonlinear systems with unknown parameters, uncertain nonlinearities, disturbances and unmodeled dynamics. The observer only has one adaptive parameter no matter how high the order of the system is and how many unknown parameters there are. With the proposed observer, neither estimating the unknown parameters or solving linear matrix inequalities is needed. It is shown that the state estimation error is uniformly bounded and can be made arbitrarily small.  相似文献   

8.
The extended state observer first proposed by Jingqing Han in [J.Q. Han, A class of extended state observers for uncertain systems, Control Decis. 10 (1) (1995) 85-88 (in Chinese)] is the key link toward the active disturbance rejection control that is taking off as a technology after numerous successful applications in engineering. Unfortunately, there is no rigorous proof of convergence to date. In this paper, we attempt to tackle this long unsolved extraordinary problem. The main idea is to transform the error equation of objective system with its extended state observer into a asymptotical stable system with a small disturbance, for which the effect of total disturbance error is eliminated by the high-gain.  相似文献   

9.
Adaptive observers for nonlinearly parameterized class of nonlinear systems   总被引:1,自引:0,他引:1  
In this paper, one proposes adaptive observers for a class of uniformly observable MIMO nonlinear systems with general nonlinear parameterizations. The state and the unknown parameters of the considered systems are supposed to lie in bounded domains which size can be arbitrarily large and the exponential convergence of the observers is shown to result under a well-defined persistent excitation condition. Moreover, the gain of the observers involves a design function that has to satisfy a simple condition which is given. Different expressions of such a function are proposed and it is shown that adaptive high gain like observers and adaptive sliding mode like observers can be derived by considering particular expressions of the design function. The theory is supported by simulation results related to the estimation of the biomass concentration and the Contois model parameters in a bioreactor.  相似文献   

10.
In this article, the problem of state observer design for a class of multi-input multi-output nonlinear systems is considered. Via state transformation and the constructive use of a Lyapunov function, the new observer design approach is addressed by introducing a parameter ? in the observer. Some sufficient conditions are given which guarantee the estimation error to asymptotically converge to zero under adaptive conditions. An example is included to illustrate the method.  相似文献   

11.
This paper presents a high gain observer for a class of MIMO nonlinear systems involving some uncertainties. The latter is particularly composed of cascade subsystems where each subsystem is associated with a subset of the output variables, and assumes a triangular dependence on its own state variables and may depend on the state variables of all other subsystems. The main contribution consists in extending the available results to allow more interconnections between the subsystems. Of fundamental interest, it is shown that the underlying observation error exponentially converges to zero in the absence of uncertainties. Moreover, the observation error can be made as small as desired by properly specifying the observer design parameter in the case where uncertainties are considered.  相似文献   

12.
In this paper, we develop a new discontinuous output feedback tracking controller for a class of uncertain, nonlinear, multi-input/multi-output, mechanical systems whose dynamics are first-order differentiable. A novel filter design and Lyapunov-type stability analysis are used to prove semi-global asymptotic tracking. As a by-product of the proposed framework, we also present the design of a new simple, discontinuous velocity observer that ensures global asymptotic velocity observation.  相似文献   

13.
For nonlinear single-input single-output systems , the relationships for a state transformation into the nonlinear observer canonical form are developed. It is possible to dimension a nonlinear observer by an eigenvalue assignment without solving the nonlinear partial differential equations for the transformation, if the transformed nonlinearities are linearized about the reconstructed state. With reference to the extended Kalman filter algorithm, this nonlinear observer design is called the extended Luenberger observer.  相似文献   

14.
In this paper, a new fuzzy adaptive control approach is developed for a class of SISO strict-feedback nonlinear systems, in which the nonlinear functions are unknown and the states are not available for feedback. By fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive high-gain observer is designed to estimate the unmeasured states. Under the framework of the backstepping design, fuzzy adaptive output feedback control is constructed recursively. It is shown that the proposed fuzzy adaptive control approach guarantees the semi-global boundedness property for all the signals of the resulting closed-loop system. Simulation results are included to illustrate the effectiveness of the proposed techniques.  相似文献   

15.
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.  相似文献   

16.
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.  相似文献   

17.
《Automatica》2014,50(11):2951-2960
In this paper, we propose an adaptive observer for a class of uniformly observable nonlinear systems with nonlinear parametrization and sampled outputs. A high gain adaptive observer is first designed under the assumption that the output is continuously measured and its exponential convergence is investigated, thanks to a well defined persistent excitation condition. Then, we address the case where the output is available only at (non uniformly spaced) sampling instants. To this end, the continuous-time output observer is redesigned leading to an impulsive observer with a corrective term involving instantaneous state impulses corresponding to the measured samples and their estimates. Moreover, it is shown that the proposed impulsive observer can be put under the form of a hybrid system composed of a continuous-time observer coupled with an inter-sample output predictor. Two design features are worth to be emphasized. Firstly, the observer calibration is achieved through the tuning of a scalar design parameter. Secondly, the exponential convergence to zero of the observation and parameter estimation errors is established under a well defined condition on the maximum value of the sampling partition diameter. More specifically, the observer design is firstly carried out in the case of linear parametrization before being extended to the nonlinear one. The theoretical results are corroborated through simulation results involving a typical bioreactor.  相似文献   

18.
An observer for systems with nonlinear output map   总被引:1,自引:0,他引:1  
A nonlinear observer, with the feedback gain weighted by the sensitivity of the output with respect to the state, is developed for systems with nonlinear output map. The observer can be obtained from the extended Kalman filter by a special choice of time-varying weighting matrices. It is shown that the estimation error dynamics are asymptotically stable and a region of attraction is derived. The observer is applied to the top blown converter process for estimating the content of impurities in the liquid metal. Using plant data from the converter at SSAB Oxelösund AB, the observer is shown to provide accurate estimates of the carbon content.  相似文献   

19.
We consider a general high-gain scaling technique for global control of strict-feedback-like systems. Unlike previous results, the scaling utilizes arbitrary powers (instead of requiring successive powers) of the high-gain parameter with the powers chosen to satisfy certain inequalities depending on system nonlinearities. The scaling induces a weak-cascading upper diagonal dominance (w-CUDD) structure on the dynamics. The analysis is based on our recent results on the w-CUDD property and uniform solvability of coupled state-dependent Lyapunov inequalities. The application of the general scaling technique to the design of a high-gain observer enables relaxation of the assumption in our earlier papers on cascading dominance of upper diagonal terms. The high-gain observer is coupled with a backstepping-based controller to obtain robust global stabilization in the presence of uncertainties that are incrementally linearly bounded in unmeasured states.  相似文献   

20.
In this paper, by using the well-known high-gain observer design, an update law for the gain and an adaptive estimation of parameters, a new method of fault diagnosis for a class of nonlinear systems is presented. Without resort to any transformation for the parameters, the estimation errors of the states and the parameters are guaranteed to be globally exponentially convergent by a persistent excitation condition. Compared to the existing results, it can be applied to nonlinear systems with nonlinear terms admitting an incremental rate depending on the measured output. A case study further verifies the validity of the proposed research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号