共查询到19条相似文献,搜索用时 31 毫秒
1.
2.
一种改进的变步长LMS自适应滤波算法 总被引:1,自引:0,他引:1
提出一种改进的变步长LMS(Least Mean Square)算法,该算法在步长参数μ与误差信号e(n)之间建立了一种非线性函数关系,并且分析了参数α,β的取值原则及对算法收敛性能的影响。该关系具有在误差e(n)接近零处缓慢变化的优点,克服了s函数变步长LMS算法在自适应稳态阶段μ(n)取值偏大的缺陷。理论分析和计算机仿真结果表明,改进算法的收敛速度和稳态误差的性能指标都有较大的提高。 相似文献
3.
4.
提出将一种改进的差分进化算法——带局部搜索的动态多群体自适应差分进化算法(DMSDELS)应用于函数优化.该算法将种群中的个体随机动态分成多个子群体,以增强个体间的信息交换;变异操作中,选择最优个体为基向量,差分向量的方向选择有利于搜索的方向,以提高收敛速度;变异尺度因子F与交叉概率CR采用自适应机制,以平衡局部搜索与全局搜索;部分优秀个体搜索达到指定代数进入局部搜索,以加快收敛.通过对13个benchmark典型复杂函数进行测试,并与其他七种优化算法进行比较,仿真结果表明:DMSDELS算法具有较高的搜索精度和收敛性,且具有较强的跳出局部最优解能力. 相似文献
5.
传统的鲸鱼优化算法(WOA)容易陷入局部最优以及收敛速度慢,针对此问题进行研究,提出了一种改进的鲸鱼优化算法,改进算法首先用非线性收敛因子替换原本使用的收敛因子,改进后的非线性收敛因子可以有效利用在算法中以弥补该算法在计算过程中全局探索与局部开发能力中的缺陷,并且可以加快算法收敛速度;然后在鲸鱼位置更新公式中加入了自适应权重,该策略可以改善算法的寻优精度以及进一步提高收敛速度;最后,在固定参数和不同维度的8个基准测试函数上进行了实验,结果表明,改进后的算法在寻找最优位置的精度和收敛速度对比于传统的鲸鱼算法和其他智能优化算法均有着显著的提高,具有更好的优化效果. 相似文献
6.
传统的最小均方误差(LMS)算法难以同时获取较快的收敛速度和较小的稳态误差,而变步长LMS算法可获得二者之间的平衡。对已有的一些变步长LMS算法进行了分析,在变系数步长(VFSS)算法的基础上,引入输入信号因子,并建立步长因子与误差信号之间新的非线性函数关系,提出一种改进的变步长LMS算法,该算法不仅继承了VFSS算法在低信噪比环境下抗噪声性能好的特点,而且能够快速跟踪系统的变化,仿真结果表明改进算法的性能优于现有算法。 相似文献
7.
对于自适应自然梯度算法,选择步长参数以达到好的分离性能是非常必要的。提出了一种步长自适应自然梯度算法。由于该算法中的步长基于分离状态,其学习速率由信号的分离程度自适应选取,因而能很好地解决收敛速度与稳态误差之间的矛盾。计算机模拟试验结果显示,该算法优于传统的自然梯度算法。 相似文献
8.
为解决传统果蝇算法中收敛速度慢、收敛精度低、易陷入局部最优的问题,提出基于步长指数递减策略和t分布扰动策略的果蝇优化算法.根据指数函数逐步递减的性质,将传统果蝇算法中果蝇个体的步长更新策略变为指数函数自适应步长;并在果蝇群体位置更新时加入t分布扰动,使个体位置有着随机性,减少了算法陷入局部最优的可能性.在实验过程中选取... 相似文献
9.
《现代电子技术》2019,(14)
对于求解TSP问题,提出一种贪婪随机自适应灰狼优化算法(GRAGWO)。GRAGWO算法基于贪婪随机自适应搜索算法(GRASP),采用其构造阶段生成初始解,在局部搜索阶段采用灰狼优化算法(GWO)对结果进行优化。GWO算法不能直接用于求解离散问题,易陷入局部最优,导致后期收敛速率较低。根据TSP问题的特性,针对易形成局部最优路径和随着迭代次数增进而导致种群多样性减退这两个缺陷,重新定义灰狼编码方式,与GRASP启发式算法相结合,应用于求解TSP问题。采用TSPLIB中的多组不同规模的TSP问题作为实验用例,并将GRAGWO算法与其他仿生算法进行对比,结果表明在求解准确率、稳定性和解决大型城市问题方面具有相对优势。 相似文献
10.
基于月球车全局路径规划的任务要求,采用果蝇优化算法应用于全局路径的规划。针对果蝇优化算法在路径规划中容易形成局部最优的问题,对算法进行了修改,将果蝇与原点的距离直接带入味道浓度判定函数,从而不易陷入局部最优,提高了算法的稳定性,并可使果蝇群体向已知食物源飞行。通过仿真表明该算法具有计算简单、全局寻优能力强等特点,能够快速地找到优化的全局路径。 相似文献
11.
12.
针对甲状腺肿瘤超声图像复杂度高和SPECT图像边界模糊的特点,结合Shearlet变换能够捕捉图像细节信息和果蝇优化算法可靠性高的优势,提出了Shearlet变换和果蝇优化算法相结合的图像融合算法。首先,用Shearlet变换对已精确配准的源图像进行分解,分别得到高低频子带系数。高频子带系数采用区域能量取大的融合规则,低频子带系数使用改进的加权融合规则,并把果蝇优化算法引入低频融合过程,以互信息作为适应度函数来获取最优值,克服了原加权融合算法互信息低的缺点。最后,用Shearlet逆变换得到融合后的图像。实验结果表明,此算法在主观视觉效果和客观评价指标上优于其他融合算法。 相似文献
13.
本文提出了一种改进的离散粒子群算法.为了克服算法的早熟收敛问题,引入了一个排斥过程用于增加群体的多样性,提出了一种控制群体多样性的准则,实现了算法运行过程中吸引和排斥过程的动态自适应切换.为了提高算法的收敛速度,提出了一种惯性权重动态变化策略,在算法执行的不同阶段,使惯性权重随迭代次数动态自适应变化.试验中发现,引入局部搜索技术后,算法的性能会进一步提高.最后将此算法用于解决TSP问题及车间调度问题并与其他相关算法进行了比较,实验结果表明,收敛速度快,稳定性强. 相似文献
14.
15.
目前图像模板匹配算法的一般都有计算量非常大的缺点,在实际运用中存在一定问题,根据这一问题提出了将自适应遗传算法应用到图像模板相关匹配中.模板匹配实际是寻找最优解的问题,将模板和子图像的互相关函数做为目标函数,基于自适应遗传算法实现了快速模板匹配算法.最后根据实验说明了该算法较搜索式模板匹配算法计算量大大减少的优越性. 相似文献
16.
GLA具有较强的抗噪声能力,但是其收敛的稳定性和学习速度是一对矛盾.通常为保证收敛的稳定性,需要选取足够小的步长,但过小的步长会导致训练时间过长.结合自适应步长的原理,提出改进型的算法TDBDGLA.实验结果表明,与采用同种强化方案的GLA相比,TDBDGLA取得更低的误分率,并且对于给出的衡量稳定性和学习速度的指标,TDBDGLA比GLA提高了11%以上. 相似文献
17.
为实现对双陷波超宽带(UWB)天线的精准神经网络建模,提出了一种利用改进的果蝇算法(FOA)优化广义回归神经网络(GRNN)的建模方法。该方法通过扩大果蝇搜索范围,在味道判定公式中引入调整项来实现果蝇算法的改进,并用改进后的果蝇算法优化GRNN的光滑因子。这样可以避免果蝇算法陷入局部最优,提高模型预测精度。将该方法用于双陷波超宽带天线模型的建立中,并对天线的S11参数和电压驻波比VVSWR参数进行预测。结果表明,相比于FOA-GRNN建模方法和GRNN建模方法,S11参数的最大相对误差分别减小了91.08%和99.14%;VVSWR参数的最大相对误差分别减小了98.36%和99.18%,使超宽带天线建模精度得到提高,验证了该方法的可行性。 相似文献
18.