首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在太赫兹频段,折叠波导慢波结构的损耗很大,因此需要在设计220 GHz折叠波导行波管慢波结构时进行深入研究。首先通过软件仿真的方法预测了慢波结构的S参数,然后利用紫外光刻、电镀和微铸模成型(UV-LIGA)工艺制作了慢波结构样品并进行测量。测量结果表明,该样品在220 GHz时衰减系数约为240 dB/m,与仿真结果符合较好。显微照片显示,该样品产生了形变,造成高频段2种结果存在差异。  相似文献   

2.
研制工作于太赫兹波段的微电真空折叠波导行波管(FWG-TWT)放大器,需要设计束流集中且发射度小、结构紧凑的热阴极电子枪.本文首先依据典型皮尔斯电子枪的设计理论,通过编程计算初步选定了热阴极电子枪的基本结构参数,然后利用模拟工具对电子枪的结构参数模型进行了初步的仿真优化.针对工作频率为0.22 THz的微型折叠波导行波...  相似文献   

3.
在太赫兹频段,损耗对折叠波导慢波结构的特性有显著影响。提出一种计算折叠波导慢波结构损耗的理论模型,推导出弯曲波导的衰减系数。分别使用理论模型和商业仿真软件计算了0.67 THz折叠波导慢波结构的损耗,二者的计算结果吻合较好,表明理论模型有较高的精确度。最后,使用理论模型分析了0.67 THz折叠波导慢波结构的结构参数变化对损耗特性的影响。  相似文献   

4.
本文提出了一种适用于850 GHz太赫兹波成像系统的可调谐再生反馈振荡器。使用UV-LIGA微加工工艺制作慢波结构,可满足折叠波导在太赫兹频段的尺寸需求。使用CST微波工作室对折叠波导色散特性进行设计,同时针对于行波管和再生反馈振荡器中折叠波导的结构,阐明了影响频率调谐的因素。此外,对带衰减的反馈回路进行仿真模拟,并使用三维粒子模拟验证了整体设计。改变电子注电压可实现振荡频率可调,振荡从单频状态逐渐变为多频状态,整体输出功率均大于200 mW。  相似文献   

5.
折叠波导慢波结构太赫兹真空器件研究   总被引:7,自引:0,他引:7  
简要介绍了利用折叠波导慢波结构的太赫兹真空辐射源的发展现状,重点对折叠波导慢波结构的特点进行了研究,并利用这种慢波结构开展了W、D波段行波管,W波段和650GHz返波振荡器,560GHz反馈振荡放大器的设计、计算和模拟优化,分别得到了较好的结果,并实际研制出W波段连续波行波管,输出功率达到8W。对太赫兹真空辐射源的部件技术、微细加工技术进行了研究和分析。  相似文献   

6.
在太赫兹频段,折叠波导慢波结构主要采用微细加工技术完成。讨论了目前折叠波导慢波结构主要的微加工工艺,分析了主要工艺误差包括波导深度、侧壁垂直度对0.41 THz折叠波导慢波结构高频特性的影响。通过分析比较,a值对折叠波导行波管性能影响很大,需要在工艺中精确控制。在侧壁垂直度为89°范围以内,侧壁垂直度的变化对折叠波导行波管性能影响不大。通过仿真分析,确定了工艺中必须控制加工精确度的工艺步骤,这对0.41 THz折叠波导行波管的研制有非常重要的意义。  相似文献   

7.
采用等效电路方法和电磁场仿真软件Ansoft HFSS分析了折叠波导行波管的结构参数对其高频特性的影响,并在此基础上确定了Ka波段折叠波导行波管的尺寸.利用三维非线性粒子模拟软件MAGIC3D建立了两段式折叠波导行波管的模型,模拟研究了切断区长度和位置对折叠波导行波管的饱和输出功率及第2段电路单位长度增益的影响.最后设计了一个工作于33~36GHz的两段式折叠波导行波管,其输出功率的波动小于1dB,最大连续波输出功率达670W,对应电子效率高达7.55%.  相似文献   

8.
借助微机电加工技术(MEMS技术)研制的微折叠波导行波管(FWG-TWT)太赫兹辐射源,具有紧凑、小型、宽带以及高功率的特点。本文对345 GHz微电真空折叠波导慢波结构进行了结构参数的规律分析和初步优化设计。基于小信号理论设计的慢波结构的初步结构参数,采用三维PIC软件仿真并优化,研究了电子参数、几何结构参数、磁场参数与增益之间的关系,对折叠波导慢波结构的设计具有一定的参考意义。  相似文献   

9.
陶冶  聂兵  黄滨 《光通信研究》2011,(2):39-41,70
文章设计了一种新型的塑料光子晶体太赫兹波导,该波导包层为聚乙烯(含周期性排列的三角格子型空气孔),芯层为有机材料聚四氟乙烯.采用时域有限差分(FDTD)法仿真得到色散特性曲线.研究结果表明,该掺杂型塑料光子晶体太赫兹波导是一种适合太赫兹波传输的光子带隙效应型波导.在太赫兹波段具有良好的传输特性.  相似文献   

10.
以折叠波导行波管作为大功率回旋行波管的前级激励信号源,利用电磁仿真软件HFSS和粒子模拟软件(CST粒子工作室),对0.14 THz微电真空折叠波导行波管慢波结构的色散特性、耦合阻抗进行计算分析,然后对折叠波导行波管束波互作用过程进行粒子模拟,最后通过粒子模拟得到该折叠波导行波管的增益、工作电压、电流等工作特性参数。在电压为13.9 kV、电流为16 mA,输入功率为5 mW的条件下,输出功率为5 W,线性增益为30 dB,带宽3.7 GHz,最大输出功率为6.2 W,该结果为0.14 THz大功率回旋行波管实现kW量级的功率输出提供功率足够的前级馈入信号奠定了基础。  相似文献   

11.
研究了三种新型的曲折波导慢波系统,分别是曲折双脊波导、脊加载曲折波导和矩形槽加载曲折波导。给出了其高频特性的理论和仿真结果。然后介绍了基于常规曲折波导和脊加载曲折波导慢波系统的Ka 波段行波管的实验结果。  相似文献   

12.
Characterized with full-metal structure, high output power and broad bandwidth, microfabricated folded waveguide is considered as a robust slow-wave structure for millimeter wave traveling-wave tubes. In this paper, cold-test (without considering the real electron beam) properties were studied and optimized by 3D simulation on slow-wave structure, for designing a 220 GHz folded waveguide traveling-wave tube. The parametric analysis on cold-test properties, i.e., phase velocity, beam-wave interaction impedance and cold circuit attenuation, were conducted in half-period circuit with high frequency structure simulator, assisted by analytical model and equivalent circuit model. Through detailed parametric analyses, interference between specified structural parameters is found on determining beam-wave interaction impedance. A discretized matrix optimization for interaction impedance was effectively carried out to overcome the interference. A range of structural parameters with optimized interaction impedance distributions were obtained. Based on the optimized results, a broadband folded waveguide with cold pass-band of about 80 GHz, flat phase velocity dispersion and fairly high interaction impedance was designed for a 220 GHz central frequency traveling-wave tube. A three-dB bandwidth of 20.5 GHz and a maximum gain of 21.2 dB were predicted by small signal analysis for a 28 mm-long lossy circuit.  相似文献   

13.
由于非线性计算特别是场相位方面缺乏专门的分析工具及方法,一直难以对折叠波导行波管的电子效率及副特性进行准确分析。通过CST PARTICLE STUDIO的PIC仿真模块,利用行波管注波互作用中的轴向基波电流与轴向基波电场的相位差表征注波相位关系,提出了一种相位分析方法。通过比较V波段折叠波导行波管单跳变周期结构与均匀周期结构的注波互作用模拟结果,揭示了注波互作用中相位聚焦的物理机理,优化后电子效率提高了5.13%,验证了PIC模拟中相位分析方法的合理性。  相似文献   

14.
The cold-test characteristics of the dielectric-loaded folded waveguide traveling-wave tube (FWTWT) amplifier are investigated theoretically and the Pierce small-signal theory is employed to confirm the results. For the purpose of analysis, the discussions are separated into symmetric case and unsymmetrical case according to the loading form of the dielectrics. The calculation results indicate that both of them, especially the unsymmetrical form, can significantly reduce the phase velocity and flatten the dispersion curve. However, loading dielectric in an unsymmetrical form will lead to a large decrease in the on-axis interaction impedance, thus it is recommended to use the symmetrical form. It is further found that when the thickness of the dielectric is small, i.e. h 1/a ≤ 0.1, the interaction impedance is slightly affected by the variations on dielectric constant. The Pierce linear theory for a Q-band dielectric-loaded FWTWT amplifier shows that the bandwidth is increased from 15.08% to 27.03% and the operating voltage is decreased from 20.5 kv to 18.6 kv.  相似文献   

15.
The rate equations of Er-doped and Yb-Er codoped systems pumped at 0.98 μm are presented, with consideration for the upconversion mechanisms such as cooperative upconversion, cross relaxation, and excited state absorption. A multi-theoretical model is founded to analyze the gain characteristics of Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers by using rate equations, a two-dimension waveguide finite element model and propagation equations with forward and backward amplified spontaneous emission. The dependence of the gain on amplifier length, pump power and doping concentration is obtained. The optimum design curve is given for designing waveguide amplifiers. The new theory is used to analyze the gain performance of a practical Yb-Er co-doped Al2O3 waveguide amplifier, and the analyzed results are in accordance with the experimental data.  相似文献   

16.
A wideband folded waveguide traveling-wave tube (TWT) amplifier has advantages of simpler coupling structures and robust structure over the conventional helix TWT. The phase velocity of waves in folded waveguide is slowed down to the velocity of electron beam. Slow-wave interaction with the electron beam in folded waveguide is studied in a linear fashion. For a cold beam, the linear theory predicts a gain of 2 dB/cm and a bandwidth of 37% at the center frequency of 14 GHz. A closed algebraic dispersion relation for the frequency and the axial phase shift per period is obtained using an equivalent circuit model. Numerical solution calculated from the dispersion relation and three-dimensional electromagnetic code, HFSS simulations predict a mode coalescing in the folded waveguide. And a theoretical phase velocity prediction of the electromagnetic wave in this circuit is verified by HFSS simulations.  相似文献   

17.
In this paper, we analyze the design of the folded waveguide slow-wave circuit for traveling-wave tube (TWT) amplifiers. On the basis of physical analyses, an improved physical-based design method that is especially suitable for high-power devices is developed. The proposed method overcomes the difficulties resulting from increased operating voltages and requirements for higher interaction impedance in high-power designs. It enables balancing of dispersion and interaction impedance, which is a flexible approach in addressing operational problems. Furthermore, the essential relationship between the proposed and the existing methods are revealed. A Ka-band folded waveguide TWT amplifier is designed and examined, thereby confirming that the new design method is effective and reliable.  相似文献   

18.
赵小枫  张晓霞 《红外》2007,28(11):33-37
在四能级钕玻璃波导放大器物理模型的基础上,用重叠积分法研究了以802nm泵浦光放大1060nm信号的掺钕磷酸盐波导放大器的速率-传输方程。通过数值模拟,获得了增益特性和波导掺杂浓度、泵浦功率和波导长度的曲线关系。  相似文献   

19.
提出了一种新型微腔半导体光放大器结构,该半导体放大器在普通行波光放大器的波导结构上引入了上下布拉格反射镜,并在波导前后两侧的上端面上分别刻蚀出入射和出射光学窗口,其上蒸镀增透膜层.信号光以一定的倾角斜入射到波导中,以之字型路线沿波导传播.提出了一个完整的、考虑了微腔特性的稳态模型,系统模拟了微腔半导体光放大器的特性.结果表明该微腔半导体光放大器的光纤到光纤增益可达40dB,而噪声指数只有3.5dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号