共查询到20条相似文献,搜索用时 15 毫秒
1.
The fabrication of flexible transparent conducting films (TCFs) is important for the development of the next-generation flexible devices. In this study, we used double-walled carbon nanotubes (DWCNTs) as the starting material and described a fabrication method of flexible TCFs. We have determined in a quantitative way that the key factors are the length and the dispersion states of the DWCNTs as well as the weight-ratios of dispersant polymer/DWCNTs. By controlling such factors, we have readily fabricated a flexible highly transparent (94% transmittance) and conductive (surface resistivity = 320 Ω sq−1) DWCNT film without adding any chemical doping that is often used to reduce the surface resistivity. By applying a wet coating, we have succeeded in the fabrication of large-scale conducting transparent DWCNT films based on the role-to-role method. 相似文献
2.
3.
Wen-Yin KoJun-Wei Su Chian-Hua GuoShu-Juan Fu Chuen-Yuan HsuKuan-Jiuh Lin 《Thin solid films》2011,519(22):7717-7722
Open rings of multi-walled carbon nanotubes were stacked to form porous networks on a poly(ethylene terephthalate) substrate to form a flexible conducting film (MWCNT-PET) with good electrical conductivity and transparency by a combination of ultrasonic atomization and spin-coating technique. To enhance the electric flexibility, we spin-coated a cast film of poly(vinyl alcohol) onto the MWCNT-PET substrate, which then underwent a thermo-compression process. Field-emission scanning electron microscopy of the cross-sectional morphology illustrates that the film has a robust network with a thickness of ~ 175 nm, and it remarkably exhibits a sheet resistance of approximately 370 Ω/sq with ~ 77% transmittance at 550 nm even after 500 bending cycles. This electrical conductivity is much superior to that of other MWCNT-based transparent flexible films. 相似文献
4.
分别以纺锤形碳酸钙表面改性的二维片状石墨烯微片(CGM)和多壁碳纳米管(MWCNTs)作为导电剂填充改性聚乙烯(PE)制备导电复合材料。重点研究了二维或一维纳米碳/PE复合材料形成导电网络时力学与电学性能。CGM/PE或MWCNTs/PE复合材料达到抗静电要求时CGM的质量分数为8wt%,而MWCNTs的质量分数为1wt%。填充8wt% CGM的复合材料表现出优异的综合性能,而填充0.5wt% MWCNTs的复合材料综合力学性能达到最大值还未能达到抗静电要求,达到抗静电要求时MWCNTs/PE复合材料的综合力学性能出现下降趋势。通过形貌及流变学分析了复合材料不同的力学与电学性能的微观作用因素。CGM/PE复合材料流变渗流阈值与导电渗流阈值存在比较好的相关性,MWCNTs/PE复合材料达到流变渗流阈值还不能形成导电网络。结果表明,与二维CGM相比,一维MWCNTs不易均匀分散于聚合物基体中,并降低MWCNTs/PE复合材料的力学性能。 相似文献
5.
I Stuart Fraser Marcelo S Motta Ron K Schmidt Alan H Windle 《Science and Technology of Advanced Materials》2010,11(4)
This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development. 相似文献
6.
AbstractThis work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development. 相似文献
7.
K. F. Akhmadishina I. I. Bobrinetskii R. A. Ibragimov I. A. Komarov A. M. Malovichko V. K. Nevolin V. A. Petukhov 《Inorganic Materials》2014,50(1):23-28
We have proposed a method for large-scale growth of thin nanotube films from solution on the surface of flexible, transparent substrates. Uniform nanotube deposition was achieved through the preparation of a stable colloidal nanotube solution in an aqueous surfactant solution. We examined the effect of the number of deposition cycles on the morphology of the films and their optical and electrical characteristics. The results demonstrate that the optical transmittance of the films decreases linearly with increasing film thickness, whereas their resistance decreases quadratically, which corresponds to three-dimensional nanotube percolation in the films. With increasing film thickness, the sheet resistance of the films drops from 400 to 15 kΩ/□ and their transmittance decreases from 85 to 40%, respectively. 相似文献
8.
Kim JH Jung JM Kwak JY Jeong JH Choi BC Lim KT 《Journal of nanoscience and nanotechnology》2011,11(8):7424-7427
Single walled carbon nanotube (SWNT)/graphene oxide (GO) hybrid films were prepared by a facile bar coating method on a polyethylene terephthalate substrate using a mixed solution of SWCNTs and GO. An acryl type polymer was employed as a dispersion agent to obtain SWCNT and GO suspension in ethyl alcohol. The SWCNT/GO hybrid films were highly transparent and electrically conductive, showing 80% transmittance and 1.8 x 10(3) ohm/sq surface resistance. The surface resistance of the SWCNT/GO film could be further improved to 750 ohm/sq by hydrazine vapor reduction. 相似文献
9.
Jang HS Jeon SK Kwon OH Lee SC Kim CS Nahm SH 《Journal of nanoscience and nanotechnology》2012,12(4):3242-3246
Iron-catalyzed spin-capable multi-walled carbon nanotubes (MWCNTs) were grown on a SiO2 wafer by chemical vapor deposition, which was carried out at 780 degrees C using C2H2 and H2 gases. We fabricated a flexible transparent film using the spun MWCNTs. The MWCNT sheets were produced by being continuously pulled out from well-aligned MWCNTs grown on a substrate. The MWCNT sheet films were manufactured by simply carrying out direct coating on a flexible film or glass. The thickness of the sheet film decreased remarkably when alcohol was sprayed on the surface of the sheet. The alcohol spraying increased the transmittance and decreased the electrical resistance of the MWCNT sheet films. The sheets obtained after alcohol spraying had a resistance of -699 omega and a transmittance of 81%-85%. The MWCNT sheet films were heated by applying direct current. The transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, we tested the field emission of the sheet films. The sheet films showed a turn-on voltage of -1.45 V/microm during field emission. 相似文献
10.
《材料科学技术学报》2019,35(11):2447-2462
A single-wall carbon nanotube(SWCNT) has superior optical,electrical,and mechanical properties due to its unique structure and is therefore expected to be able to form flexible high-performance transparent conductive films(TCFs).However,the optoelectronic performance of these films needs to be improved to meet the requirements of many devices.The electrical resistivity of SWCNTTCFs is mainly determined by the intrinsic resistivity of individual SWCNTs and their junction resistance in networks.We analyze these key factors and focus on the optimization of SWCNTs and their networks,which include the diameter,length,crystallinity and electrical type of the SWCNTs,and the bundle size and interconnects in networks,as well as chemical doping and microgrid design.We conclude that isolated/small-bundle,heavily doped metallic or semiconducting SWCNTs with a large diameter,long length and high crystallinity are necessary to fabricate high-performance SWCNTTCFs.A simple,controllable way to construct macroscopic SWCNT networks with Y-type connections,welded junctions or microgrid design is important in achieving a low resistivity.Finally,some insights into the key challenges in the manufacture and use of SWCNT TCFs and their prospects are presented,hoping to shed light on promoting the practical application of SWCNT TCFs in future flexible and stretchable optoelectronics. 相似文献
11.
In this letter we present highly conductive and transparent thin films of single-walled carbon nanotubes (SWCNT) and conductive polymer composite deposited on polyethylene terephthalate film substrates by solution dipping. The initial results show that 66 Ω/? sheet resistance can be achieved with 80% transmission at the wavelength of 550 nm. This result is much superior to the performances of the pure SWCNT thin films deposited using the same technique. The improvement is attributed to the increase of effective electric conductive tube-tube junctions in the CNT network. 相似文献
12.
Ho Seung Ki Jeong Hyun Yeum Soonja Choe Jung Hyun Kim In Woo Cheong 《Composites Science and Technology》2009
Transparent and conductive carbon nanotubes (CNTs)/polyurethane-urea (PUU) composite films were prepared by solvent evaporation-induced self-assembly (EISA). Pristine CNTs were treated with acids (H2SO4/HNO3 = 3:1, v:v), acylated with thionyl chloride, and purified after filtration. These acylated CNTs (0.05 wt.% in dimethylformamide, DMF) were deposited onto the 3-aminopropyl triethoxysilane (APTES)-modified glass substrate by DMF EISA at 100 °C with the withdrawal rate of 3 cm/h. The CNT layers of 200–400 nm thicknesses were transferred to the PUU films by solution casting or resin transfer molding (RTM) at ambient temperature. Optical transmittances of the composite films were 60–75% at 550 nm wavelength and their sheet resistances were 5.2 × 100–2.4 × 103 kΩ/square, and which varied significantly with type of CNTs and the transferring methods of CNT layers. 相似文献
13.
Transparent cellulose nanowhiskers (CNW)/graphene (GN) and CNW/multi-wall carbon nanotube (MWCNT) films were obtained by ultrasonication assisted mechanically stirring followed by solvent casting methods. GN has more significant influence on the properties of CNW film than MWCNT does because GN exhibits strong interaction with CNW by its adsorption on the surface of GN. Thermal behaviors of CNW-based composite films were greatly affected by addition of GN or MWCNT. The melting peak and initial degradation temperature increase by 23.5 and 24 °C, and by 78 °C and 94 °C for the composite films containing 5 wt% MWCNT and 5 wt% GN, respectively. The composites show the contact angles of 61.9° for GN included film and 46.9° for MWCNT included film, which is higher than that of pure CNW film (42.8°). 相似文献
14.
15.
16.
17.
Understanding of the effect of the multi-walled carbon nanotube (MWCNT) dispersion process on physical properties of MWCNT film is crucial in process optimization of MWCNT film-based products. In the present work, the electrical conduction property of MWCNT films according to various conditions in MWCNT dispersion is investigated. Spectroscopic analysis of dispersed MWCNTs show that the electrical resistance of the MWCNT conductive film is affected by an increase in the electrical contacts between adjacent CNTs due to CNT debundling and physical damage caused by ultrasonic processing. Based on the two conflicting parameters, dispersion guidelines for highly conductive MWCNT film are presented. 相似文献
18.
In this study, the effect of various mixture fluxes of nitrogen (N2) and hydrogen (H2) on carbon nanotube (CNT) synthesis grown on flexible carbon cloth using thermal chemical vapor deposition (thermal CVD) with ethylene (C2H4) as the carbon source and nickel (Ni) as the catalyst was investigated. Field emission scanning electron microscopy (FE-SEM) was utilized to study the morphology of CNTs on flexible carbon cloths with various N2 and H2 inlet flow rates. The results indicate that average diameter of MWCNTs decreases with increasing H2 and N2 flow rates; however, the density of CNTs increases first and then decreases with increasing H2 and N2 flow rates. On the other hand, in our field emission experiments, the result indicates that the field emission is strongly dependent on the density and geometry of MWCNTs. In addition, we also found that the contact electrical conductance measurement is an easy method to predict the field emission characteristics of MWCNTs. 相似文献
19.
Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays 总被引:4,自引:0,他引:4
Y. Leterrier L. Mdico F. Demarco J. -A. E. Mnson U. Betz M. F. Escol M. Kharrazi Olsson F. Atamny 《Thin solid films》2004,460(1-2):156-166
The mechanical integrity of tin-doped indium oxide (ITO) thin films sputtered onto a high temperature aromatic polyester developed for flexible display applications was investigated by means of tensile experiments equipped with electrical measurement, and carried out in-situ in an optical microscope. Attention was paid to the influence of ITO thickness, composition and crystalline microstructure, internal stress, annealing, and polymer substrate. It was observed that process-induced internal stresses were systematically compressive, and that tensile cracks in the ITO always initiated at pin-hole defect sites. A transition from stable to unstable crack growth was detected when crack length was several 100 times coating thickness. The occurrence of such a transition, which corresponded to an increase in electrical resistance equal to approximately 10%, indicated that crack propagation controlled the loss of functional performance of the device. It was moreover found that an improved surface quality of the polymer substrate, such as that obtained with planarization hard coats, was a major factor to increase the cohesive properties of ITO thin films. It was also observed that the intrinsic crack onset strain followed classic fracture mechanics scaling, in inverse proportion to the square root of ITO thickness. 相似文献
20.
Applications of carbon nanotubes (CNTs) like field emission displays, super-capacitors, and cell growth scaffolds can benefit from controllable embedding of the CNTs in a material such that the CNTs are anchored and protrude a desired length. We demonstrate a simple method for anchoring densely packed, vertically aligned arrays of CNTs into silicone layers using spin-coating, CNT insertion, curing, and growth substrate removal. CNT arrays of 51 and 120?μm in height are anchored into silicone layers of thickness 26 and 36?μm, respectively. Scanning electron microscopy (SEM) and optical microscopy are used to characterize the sample morphology, a 5.5?m?s(-1) impinging water jet is used to apply shear stress, and a tensile test shows that the silicone layer detaches from the substrate before the CNTs are ripped from the layer. The CNTs are thus well anchored in the silicone layers. The spin-coating process gives control over layer thickness, and the method should have general applicability to various nanostructures and anchoring materials. 相似文献