首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high dielectric constant X8R dielectric materials could be sintered at 1,240 °C by doping 2.5 mol% Pb(Ti,Sn)O3 additives into the BaTiO3 ceramics, with a dielectric constant greater than 3,400 at 25 °C, dielectric loss lower than 2.0% and temperature coefficient of capacitance (TCC) less than ±15% from −55 to 150 °C, which satisfied X8R specification. The effects of Pb(Ti,Sn)O3 on the microstructure and dielectric properties of BaTiO3-based ceramics were investigated. Doped with Pb(Ti,Sn)O3 additives, the partial solid solution was formed between Pb(Ti,Sn)O3 and BaTiO3. Due to the high Curie point of Pb(Ti,Sn)O3, the Curie point of the ceramics was markedly shifted to higher temperature about 150 °C, and the temperature coefficient of capacitance curves was flattened. The increase of the tetragonality (c/a ratio) and the fine microstructure were resulted in the increase of dielectric constant. With Pb(Ti, Sn)O3 content up to 3 mol%, the depression of Ti4+’s polarization and the decrease of the tetragonality (c/a ratio) were resulted in the decrease of dielectric constant.  相似文献   

2.
The microstructure and dielectric properties of Yb-Mn- and Yb-Ni-substituted BaTiO3 ceramics are investigated in this paper. Both Yb-Mn- and Yb-Ni-substituted BaTiO3 ceramics satisfy the X8R specification (−55 C to 150 C, Δ C = ±15% or less) for automotive application when CaZrO3 is incorporated in the formulations. It is found that both Mn and Ni ions can suppress the diffusion of Yb and CaZrO3 into BaTiO3 grains, resulting in formation of core-shell structures in the grains. It is found that Mn is more favorable to stabilize the core-shell structure in BaTiO3 ceramics as compared with Ni.  相似文献   

3.
The effects of Mn added during processing on the dielectric properties and microstructure of the BaTiO3-based ceramic materials system were discussed. Experiments show that a proper content of Mn can significantly increase dielectric constant (ε) and reduce the dielectric loss (tanδ) in BaTiO3-based X7R ceramic materials. The results attribute to the reaction: . When the system doped with 0.046mol% MnCO3 was sintered at 1240 °C for 4 h, the ε, tanδ and TCC were 5800, 1.6%, 0 ± 10% at 1 KHz respectively.  相似文献   

4.
The effects of (Na0.5Bi0.5)TiO3 (NBT) and MgO addition on the dielectric properties and microstructures of BaTiO3 (BT) ceramics were investigated. NBT was first added to Nb2O5-doped BT system. As NBT content increases from 0 to 0.2 mol, the Curie temperature of the systems shifts to high temperatures and dielectric constant peak at T c is suppressed evidently. The variation of capacity (ΔC/C 20 °C (%)) of the system at 200 °C decreases with increasing NBT content from 0.1 to 0.2 mol, but that of −55 and 125 °C increases monotonously. The stable temperature characteristics of the dielectric properties improved by NBT doping would be connected with the distortion and deformation of the structure induced by substitution of Na+ and Bi3+ into Ba sites. MgO was employed to further flatten the ΔC/C 20 °CT curve. It is very helpful for this ceramic system to satisfy the requirement of EIA-X9R specification on ΔC/C 20 °C and still keep a satisfied dielectric constant. The addition of MgO improved effectively the temperature stability of the dielectric properties. Changes of the crystalline structure and microstructure induced by MgO doping might contribute to these improvements.  相似文献   

5.
Strontium titanate and barium titanate ceramics prepared by a reaction-sintering process were investigated. The mixture of raw materials of stoichiometric SrTiO3 and BaTiO3 was pressed and sintered into ceramics without any calcination stage involved. A density 4.99 g/cm3 (97.5% of the theoretic value) was found in SrTiO3 after 6 h sintering at 1,370 °C. Grains less than 1.5 μm were formed at 1,300–1,330 °C and became 2.2–3.3 μm at 1,350–1,370 °C SrTiO3. A density 5.89 g/cm3 (97.9% of the theoretic value) was found in BaTiO3 after 6 h sintering at 1,400 °C. Merged grains were observed in BaTiO3 and were less than 10 μm after sintered at 1,400 °C.  相似文献   

6.
BaTiO3-based ultrafine nonreducible dielectrics for multilayer ceramic capacitors were prepared by a newly developed nanocomposite doping process. According to TG-DTA, XRD and TEM analysis, the nanocomposite dopants via sol–gel method were uniform and well dispersive. The micromechanism was investigated based on comparing conventional process with nano-doping process. It indicated that due to the special nano-effect, doping effect of additives became more effective and the microstructure and dielectric properties of ceramics were improved. The results showed that high performance dielectrics satisfying X8R specification were achieved, with high dielectric constant of 2,900, low dielectric loss of 0.6% and large insulation resistivity of 1012 Ω cm.  相似文献   

7.
Samples of xBiFeO3–(1 − x)BaTiO3 (x = 0, 0.02, 0.04, 0.06, 0.07 and 0.08) were synthesized by solid state reaction technique and sintered in air in the temperature range 1,220–1,280 °C for 4 h. X-ray diffraction data showed that 2–8 mol% BiFeO3 can dissolve into the lattice of BaTiO3 and form single perovskite phase. The crystal structure changes from tetragonal to cubic phase at room temperature when 8 mol% of BiFeO3 was added into BaTiO3. Scanning electron microscope images indicated that the ceramics have compact and uniform microstructures, and the grain size of the ceramics decreases with the increase of BiFeO3 content. Dielectric constants were measured as functions of temperatures (25–200 °C). With rising addition of BiFeO3, the Curie temperature decreases. For the sample with x = 0.08, the phase transition occurred below room temperature. The boundary between tetragonal and cubic phase of the BiFeO3–BaTiO3 system at room temperature locates at a composition between 7 and 8 mol% of BiFeO3. The diffusivity parameter γ for compositions x = 0.02 and x = 0.07 is 1.21 and 1.29, respectively. The relaxor-like behaviour is enhanced by the BiFeO3 addition.  相似文献   

8.
The influences of BaBi2Nb2O9 content on the electrical property and the microstructure of BaTiO3-based materials have been studied. With an increase in BaBi2Nb2O9 content the grain size decreases. All the prepared BaBi2Nb2O9 doping BaTiO3-based thermistors show typical PTC effect. As the amount of BaBi2Nb2O9 added in BaTiO3-based ceramics increases, resistivity appears to exhibit a minimum value. At high BaBi2Nb2O9 content (≥0.0875), the resistivity increased again with increasing BaBi2Nb2O9 content. At a given content of BaBi2Nb2O9, the influence of sintering temperature on the electrical properties of samples has been investigated. A minimum of room temperature resistivity is obtained at the sintering temperature equal to 1,290 °C at a given content of BaBi2Nb2O9.  相似文献   

9.
The effect of Mn2+ on the temperature coefficient of capacitance (TCC) of TiO2/SiO2-doped BaTiO3 ceramics has been investigated. The experiment has shown that the high temperature peak of TCC exhibited a continuous enhancement when Mn2+ concentration increased and X8R specification was gradually met. The secondary phase Ba2TiSi2O8 was found in all samples. SEM and XRD analyses have proved that Mn2+ could depress the crystallization of TiO2/SiO2 in BaTiO3 ceramics. The microstrain study through MAUD analysis depicted that the high temperature peak of TCC was dependent on the microstrain of samples to a certain extent. The Mn2+ could be a useful dopant for ameliorating the TCC of TiO2/SiO2-doped BaTiO3 ceramics. The text was submitted by the authors in English.  相似文献   

10.
The relationship between the microstructures and dielectric properties of BaTiO3-based X7R ceramics has been investigated at different calcination temperatures. The XRD and SEM results show that calcinations of BaTiO3 raw powders increase the grain size and stabilize the tetragonality (c/a ratio) of the ceramics. The grain growth caused by the calcination prevents the doped ions from diffusing into the interior of the grains, and then increases the volume fraction of the tetragonal phased core. This process greatly increases the dielectric constant by improving the ferroelectricity. As a result, the relaxation mechanism of the domain reorientation generates high loss tangent. The BaTiO3 ceramics with X7R specifications were prepared at the calcination temperature of 1200 °C and the sintering temperature of 1240 °C, whose dielectric properties were ɛ r ≥ 4500, Δɛ r/ɛ r25 ± 10%(−55∼125 °C), tanδ ≤ 0.012(25 °C), respectively.  相似文献   

11.
We have studied the effect of codoping with CeO2 and SnO2 (2 to 3.5 wt %) on the microstructure and dielectric properties of BaTiO3. Doping with CeO2 and SnO2 inhibits grain growth in BaTiO3 and enables the fabrication of ceramic materials with a grain size below 1 μm. The temperature coefficient of permittivity of the ceramics increases with CeO2 + SnO2 content, firing temperature, and firing time.  相似文献   

12.
The influences of B2O3 and CuO (BCu, B2O3: CuO = 1:1) additions on the sintering behavior and microwave dielectric properties of LiNb0.6Ti0.5O3 (LNT) ceramics were investigated. LNT ceramics were prepared with conventional solid-state method and sintered at temperatures about 1,100 °C. The sintering temperature of LNT ceramics with BCu addition could be effectively reduced to 900 °C due to the liquid phase effects resulting from the additives. The addition of BCu does not induce much degradation in the microwave dielectric properties. Typically, the excellent microwave dielectric properties of εr = 66, Q × f = 6,210 GHz, and τ f  = 25 ppm/oC were obtained for the 2 wt% BCu-doped sample sintered at 900 °C. Chemical compatibility of silver electrodes and low-fired samples has also been investigated.  相似文献   

13.
Barium titanate (BaTiO3) thin films doped with Mn (0.1–1.0 at%) were prepared by r.f. magnetron sputtering technique. Oxygen/argon (O2/Ar) gas ratio is found to influence the sputtering rate of the films. The effects of Mn doping on the structural, microstructural and electrical properties of BaTiO3 thin films are studied. Mn-doped thin films annealed at high temperatures (700 °C) exhibited cubic perovskite structure. Mn doping is found to reduce the crystallization temperature and inhibit the grain growth in barium titanate thin films. The dielectric constant increases with Mn content and the dielectric loss (tan δ) reveals a minimum value of 0.0054 for 0.5% Mn-doped BaTiO3 films measured at 1 MHz. The leakage current density decreases with Mn doping and is 10−11 A/cm−2 at 6 kV/cm for 1% Mn-doped thin films.  相似文献   

14.
Because of the fabricability of polymer and excellent dielectric properties of ceramics, ceramic-polymer composites have been investigated widely for embedded capacitors which can improve electric performance greatly. In order to obtain further application of composite, the embedded capacitors with three-layer sandwich structure containing the BaTiO3/epoxy composites as dielectric layer and copper foil as electrodes were fabricated. The dielectric properties are improved by preventing the defect in dielectric layer through lamination process. Our results show that the capacitors exhibit high dielectric permittivity (ε = 20), low dielectric loss (0.01) at 103 Hz from 40 to 100 °C and high breakdown strength (24 kV/mm), which indicate that the lamination is a promising process for embedded capacitor fabrication and BaTiO3/epoxy composites have potential for high-performance embedded capacitors application in field of microelectronics.  相似文献   

15.
In this paper, BaTiO3 thin films were prepared by RF magnetron sputtering on MgO substrates and their properties such as the crystal structure and optical waveguide properties were investigated. The optimum deposition parameters, such as substrate temperature, deposition pressure, gas flow ratio, the RF power and the after annealing temperature, were obtained in order to get the best BaTiO3 film quality. The XRD results show that highly c-axis textured BaTiO3 thin films were successfully grown on MgO substrate. Films obtained under the optimum deposition parameters, substrate temperature of 650°C, RF power of 50 W, deposition pressure 18 mTorr and gas flow ratio O2/(Ar+ O2) of 15% namely, reaches a full width at half maximum intensity (FWHM) of BaTiO3 (002) XRD peak of 0.25°. The FWHM of BaTiO3 (002) XRD peak was further reduced to 0.24° via post-treatment with furnace annealing (at 800°C for 2 h) which indicates the film crystal quality is further improved. The bright and sharp TE modes measured by m-line spectroscopy of the BaTiO3 film were observed indicating its possible application in optical waveguide.  相似文献   

16.
The high performance X9R ceramics could be sintered at as low as 1,120?°C by doping 3?mol% synthesized BaTiO3 (SB) additives into the BaTiO3-based ceramics, with a dielectric constant greater than 2,200 at 25?°C and dielectric loss lower than 1.7?%. The effects of SB additives on the microstructure and dielectric properties of BaTiO3-based ceramics were investigated. The dielectric constant of BaTiO3-based ceramics doped with 3?mol% SB was increased due to the promotion of the densification of ceramics. With SB content up to 4.5?mol%, Ti4+’s polarization was depressed, which resulted in the decrease of augmented dielectric constant at 25?°C. The partial solid solution was formed between Pb(Ti, Sn)O3 and BaTiO3, and the substitutions of Pb at A-sites and Sn at B-sites were existed. The strengthen of Ti–O bonds and higher Curie point of Pb(Ti0.55Sn0.45)O3 was helpful to increased the Curie point of the ceramics effectively. Doped with SB additives, the volume of ferroelectric core was increased, and the sharp peak intensity at Curie point was increased accordingly. Capacitance temperature characteristics was improved attributed to the mutual effects of SB and Pb(Ti0.55Sn0.45)O3. The formation of core–shell structure was sensitive to the sintering temperature, so the dielectric properties of ceramics were highly depended on the sintering temperature.  相似文献   

17.
Polycrystalline samples of Li and Bi co-substituted BaTiO3 were synthesized using microwave assisted heating of the starting materials. This synthesis process extraordinarily reduced the processing time to 40 min, which includes heating and the dwell durations. The room temperature powder X-ray diffraction patterns reveals that the obtained compounds were of pure BaTiO3 phase (BTO). The structural, morphological and dielectric behaviour of these compositions were studied. Improved dielectric properties have been observed with the substitute of Bi and Li. It is interesting to note that the loss tangent of the co-substituted compositions are lower than that of the parent composition and it decreases approximately with increasing extent of co-substitution. This property is quite useful to develop this material further for capacitor applications. The transition temperature has shifted from 120 °C of pure BaTiO3 towards higher temperatures to 150, 160 and 175 °C with (Bi, Li)x where x = (0.02, 0.04 and 0.08), respectively of co-substitution BaTiO3. The change is linear with the degree of co-substitution.  相似文献   

18.
The effects of CuO–Bi2O3–V2O5 additions on the sintering temperature and the microwave dielectric properties of MgTiO3 ceramics were investigated systematically. The CuO–Bi2O3–V2O5 (CuBiV) addition significantly lowered the densification temperature of MgTiO3 ceramics from 1400 °C to about 900 °C, which is due to the formation of the liquid-phase of BiVO4 and Cu3(VO4)2 during sintering. The saturated dielectric constant (εr) increased, the maximum quality factor (Qf) values decreased and the temperature coefficient of resonant frequency (τf) shifted to a negative value with the increasing CuBiV content, which is mainly attributed to the increase of the second phase BiVO4. MgTiO3 ceramics with 6 wt.% CuBiV addition sintered at 900 °C for 2 h have the excellent microwave dielectric properties: ε r= 18.1, Qf = 20300 GHz and τf = −57 ppm/ °C.  相似文献   

19.
Dense nanocrystalline BaTiO3 ceramics are successfully prepared by the high pressure assisted sintering. Microstructures are observed by scanning electronic microscopes. The grain sizes are estimated to be about 30 and 150 nm. In comparison, BaTiO3 ceramics with the grain size of 600 nm and 1.5 μm are fabricated by conventional pressure-less sintering. The thermal properties of BaTiO3 ceramics with different grain sizes are investigated by differential scanning calorimetry and thermal expansion. The results suggest that the enthalpy values for the tetragonal-cubic transition decreased and the thermal expansion values increased with decreasing grain size. Furthermore, the Curie temperature shifts to lower temperature with decreasing grain size.  相似文献   

20.
Phase purity, microstructure, sinterability and microwave dielectric properties of BaCu(B2O5)-added Li2ZnTi3O8 ceramics and their cofireability with Ag electrode were investigated. A small amount of BaCu (B2O5) can effectively reduce the sintering temperature from 1075°C to 925°C, and it does not induce much degradation of the microwave dielectric properties. Microwave dielectric properties of ε r = 23·1, Q × f = 22,732 GHz and τ f = − 17·6 ppm/°C were obtained for Li2ZnTi3O8 ceramic with 1·5 wt% BaCu(B2O5) sintered at 925°C for 4 h. The Li2ZnTi3O8 +BCB ceramics can be compatible with Ag electrode, which makes it a promising microwave dielectric material for low-temperature co-fired ceramic technology application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号