首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CuInS2-based solar cells have a strong potential of achieving high efficiencies due to their ideal band gap of 1.5 eV. A further increase in the efficiency is expected from doping the absorber film with gallium due to enlargement of the band gap (Eg) and correspondingly the open-circuit voltage (VOC). We investigated Cu(In,Ga)S2 solar cells obtained from stacked metal layers sputtered from In and (Cu,Ga) targets followed by rapid thermal processing (RTP) in sulfur vapor. Depending on the actual RTP temperature profile, the films might exhibit CuInS2/CuGaS2 (top/bottom) segregation, which is rather detrimental for a large VOC. We found that only precursors sulfurized at sufficiently high temperatures exhibit the desired interdiffusion of the segregated CuInS2/CuGaS2 layers resulting in an increased VOC. Moreover, temperature dependent current-voltage profiling (suns-VOC-analysis) yielded strong indications for improved current collection and reduced losses for devices with proper interdiffusion of the CuInS2/CuGaS2 layers. A more fundamental question is related to the variation and formation of defect states in differently processed absorber films. The studied samples were thus further investigated by means of admittance spectroscopy, which allowed us to confirm the presence of three individual defect states in both absorber configurations. Two defects exhibit activation energies, which remain unchanged upon varying the RTP temperature whereas a third state exhibits significantly increased activation energy in devices showing interdiffusion of CuInS2/CuGaS2 layers. According to the characteristic shift of the conduction band edge upon Ga-doping we conclude that the latter defect level corresponds with the minority carriers in the p-type absorbers.  相似文献   

2.
Polycrystalline Cu(In,Ga)Se2 (CIGS) thin films were deposited onto soda-lime glass substrates using the three-stage process at the substrate temperature (Tsub) varying from 350 to 550 °C. The effect of Tsub on the structural and electrical properties of CIGS films has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall effect measurement. We found that the surface roughness, constituent phases, film morphologies, resistivity (ρ) and carrier concentration (NP) of as-grown CIGS films indicated different change trends with increase in Tsub. The higher Tsub gives smooth surface, large grain size and single-phase CIGS films. The values of NP and ρ have two demarcated regions at Tsub of 380 and 450 °C. At lower Tsub of 380 °C, larger NP and lower ρ were dominated by the existence of secondary-phase CuxSe with lower resistivity. In the case of 450 °C, the obvious changes in NP and ρ can be attributed to the sufficient Na incorporation diffused from the glass substrate. Finally, the correlation of cell parameters with Tsub was analyzed.  相似文献   

3.
Cu2ZnSnS4 (CZTS) thin films were deposited by sputtering on glass substrates using stacked precursors. The stacked precursor thin films were prepared from Cu, SnS2 and ZnS targets at room temperature with different stacking orders of Cu/SnS2/ZnS/glass (A), ZnS/Cu/SnS2/glass (B) and SnS2/ZnS/Cu/glass (C). The stacked precursor thin films were sulfurized using a tubular rapid thermal annealing system in a mixed N2 (95%)+H2S (5%) atmosphere at 550 °C for 10 min. The effects of the stacking order in the precursor thin films on the structural, morphological, chemical, electrical and optical properties of the CZTS thin films were investigated. X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy studies showed that the annealed CZTS thin film using a stacking order A had a single kesterite crystal structure without secondary phases, whereas stacking orders B and C have a kesterite phase with secondary phases, such as Cu2−xS, SnS2 and SnS. The annealed CZTS thin film using stacking order A showed a very dense morphology without voids. On the other hand, the annealed CZTS thin films using stacking orders B and C contained the volcano shape voids (B) and Sn-based secondary phases (C) on the surface of the annealed thin films. The direct band gap energies of the CZTS thin films were approximately 1.45 eV (A), 1.35 eV (B) and 1.1 eV (C).  相似文献   

4.
Cu(In,Ga)(S,Se)2 thin films with high Ga/III ratio (around 0.8) were prepared by sequential evaporation from CuGaSe2, CuInSe2, In2Se3 and Ga2Se3 compounds and then annealing in H2S gas atmosphere. The annealing temperature was varied from 400 to 500 °C. These samples were characterized by means of XRF, EPMA, XRD and SEM. The S/(S+Se) mole ratio in the thin films increased with increase in the annealing temperature, keeping the Cu, In and Ga contents nearly constant. The open circuit voltage increased and the short circuit current density decreased with increase in the annealing temperature. The best solar cell using Cu(In,Ga)(S,Se)2 thin film with Ga/(In+Ga)=0.79 and S/(S+Se)=0.11 annealed at 400 °C demonstrated Voc=535 mV, Isc=13.3 mA/cm2, FF=0.61 and efficiency=4.34% without AR-coating.  相似文献   

5.
The compositional distribution of Ga and S in Cu(InGa)(SeS)2 films fabricated by a simultaneous selenization and sulfization process was systematically investigated. At low H2Se/H2S reaction temperature (490 °C), most Ga remains at the back of the film adjacent to the Mo back contact. However, the Ga/III ratios at the top and bottom of the Cu(InGa)(SeS)2 layer monotonically increase and decrease with reaction temperatures, respectively. At T>550 °C, homogeneous distribution of elemental Ga and In through film is achieved. Further increase of the reaction temperature (e.g., T>550 °C) causes phase segregation on the surface of the Cu(InGa)(SeS)2 film confirmed by XRD, GIXRD and EDS analysis.  相似文献   

6.
Cu(In,Ga)Se2-absorber deposition on commonly used soda lime glass is constrained in temperature by the softening of the substrate. To overcome this limitation, a high-temperature resistant glass was employed as a substrate for the growth of Cu(In,Ga)Se2-absorbers by multi-stage coevaporation at standard (530 °C) and elevated (610 °C) temperatures. Absorbers were investigated using cathodoluminescence and X-ray diffraction and compared to the performance of solar cells fabricated from these absorbers. The higher deposition temperature is shown to lead to an increased homogeneity of the absorber layer both laterally and vertically and strongly enhanced open-circuit voltage. A best certified efficiency of 19.4% is reached.  相似文献   

7.
We report the preparation of copper antimony sulfide (CuSbS2) thin films by heating Sb2S3/Cu multilayer in vacuum. Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3 salts at room temperature (27 °C) on well cleaned glass substrates. A copper thin film was deposited on Sb2S3 film by thermal evaporation and Sb2S3/Cu layers were subjected to annealing at different conditions. Structure, morphology, optical and electrical properties of the thin films formed by varying Cu layer thickness and heating conditions were analyzed using different characterization techniques. XRD analysis showed that the thin films formed at 300 and 380 °C consist of CuSbS2 with chalcostibite structure. These thin films showed p-type conductivity and the conductivity value increased with increase in copper content. The optical band gap of CuSbS2 was evaluated as nearly 1.5 eV.  相似文献   

8.
CuInSe2 films and related alloys were prepared by thermal evaporation of Cu, InSe and GaSe compounds instead of elemental sources. Band-gap tailoring in Cu(In,Ga)Se2-based solar cells is an interesting path to improve their performance. In order to get comparable results, solar cells with Ga/(In+Ga) ratios x=0 and 0.3 were prepared, all with a simple two-step sequential evaporation process. The morphology of the resulting films grown at 550 °C was characterized by the presence of large facetted chalcopyrite grains, which are typical for device quality material. It is important to note that absorber films with elemental gallium resulted in a significant decrease in the average grain size of the film. The X-ray diffraction (XRD) diffraction pattern of single-phase Cu(In,Ga)Se2 films depicts diffraction peaks shifting to higher 2θ values compared to that of pure CuInSe2. The photoluminiscence (PL) spectrum of Cu(In,Ga)Se2 thin films also depicts the presence of the peak at higher energy that is attributed to the incorporation of gallium into the chalcopyrite lattice. As the band gap of CIGS increases with gallium content, desirable effects of producing higher open-circuit voltage and low current density devices were achieved. A corresponding increase in device efficiency with gallium content caused by a higher fill factor was observed. The best results show passive area efficiencies of up to 10.2% and open-circuit voltage (Voc) up to 519 mV at a minimum band gap of 1.18 eV.  相似文献   

9.
Spectrally selective AlxOy/Al/AlxOy multilayer absorber coatings were deposited on copper (Cu) and molybdenum (Mo) substrates using a pulsed sputtering system. The Al targets were sputtered using asymmetric bipolar-pulsed DC generators in Ar+O2 and Ar plasmas to deposit an AlxOy/Al/AlxOy coating. The compositions and thicknesses of the individual component layers were optimized to achieve high solar absorptance (α=0.950-0.970) and low thermal emittance (ε=0.05-0.08). The X-ray diffraction data in thin film mode showed an amorphous structure of the AlxOy/Al/AlxOy coating. The X-ray photoelectron spectroscopy data of the AlxOy/Al/AlxOy multilayer absorber indicated that the AlxOy layers present in the coating were non-stoichiometric. The optical constants (n and k) of the multilayer absorber were determined from the spectroscopic ellipsometric data. Drude's free-electron model was used for generating the theoretical dispersion of optical constants for Al films, while the Tauc-Lorentz model was used for modeling optical properties of the dielectric AlxOy layers. In order to study the thermal stability of the AlxOy/Al/AlxOy coatings, they were subjected to heat treatment (in air and vacuum) at different temperatures and durations. The multilayer absorber deposited on Cu substrates exhibited high solar selectivity (α/ε) of 0.901/0.06 even after heat-treatment in air up to 400 °C for 2 h. At 450 °C, the solar selectivity decreased significantly on Cu substrates (e.g., α/ε=0.790/0.07). The coatings deposited on Mo substrates were thermally stable up to 800 °C in vacuum with a solar selectivity of 0.934/0.05. The structural stability of the absorber coatings heat treated in air (up to 400 °C) and vacuum (up to 800 °C) was confirmed by micro-Raman spectroscopy measurements. Studies on the accelerated aging tests suggested that the absorber coatings on Cu were stable in air up to 75 h at 300 °C and the service lifetime of the multilayer absorber was predicted to be more than 25 years. Further, the activation energy for the degradation of the multilayer absorber heat treated for longer durations in air is of the order of 64 kJ/mol.  相似文献   

10.
Polycrystalline chalcopyrite thin films were potentiostatically electrodeposited from ethylene glycol solution onto SnO2-coated glass substrates at 150 °C. The thickness of the layers was estimated using talysurf at 1.0 μm after deposition for 60 min. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses were used to identify and characterise compounds formed at different potentials. It was found that Cu1.75Se formation was dominant at −0.80 V vs Se and indium assimilation increased at more negative voltages forming a mixture of compounds including numerous Cu-Se binary phases and copper indium diselenide (CuInSe2) at the cathode. As-deposited materials showed poor crystallinity and therefore films were annealed in Ar/5%H2 in the presence of Se to improve the material quality for all investigations. Although the films were deposited at 150 °C, no noticeable improvement of the CuInSe2 was observed, suggesting growth from aqueous media at room temperature to be preferable.  相似文献   

11.
Due to easiness of preparation and high energy density, V2O5 nanocrystalline thin films are particularly attractive as cathode materials for all-solid-state rechargeable lithium microbatteries. However, their electrochemical performances are strictly related to the film microstructure, which, in turn, is related to the nature and parameters of the deposition technique. For this reason, the preparation of thin films with reproducible electrochemical properties is still an open problem.Here, we report on the deposition of V2O5 crystalline thin films by means of reactive radiofrequency (r.f.) magnetron sputtering, using vanadium metal as the target. Different deposition times and substrate temperatures were adopted. X-ray powder diffraction (XRD) and atomic force microscopy were used to investigate the structural and morphological features of the films. In particular, XRD analysis revealed that the deposition parameters affect the crystallographic orientation of the films. A h 0 0 orientation is observed in case of thin samples (about 100 nm) prepared at 300 °C, whereas a 1 1 0 preferential growth is obtained for thicker films. Films deposited at 500 °C display a 0 0 1 orientation irrespective on the deposition time.Reversible Li intercalation/deintercalation processes and high specific capacity are observed for the h 0 0-oriented V2O5 thinner films, with the ab plane arranged perpendicular to the substrate. In this case, the cycling behaviour is very promising, and a stable capacity higher than 300 mAh g−1 was delivered in the potential range 3.8-1.5 V at 1C rate over at least 70 cycles.  相似文献   

12.
The objective of this study is to find the key factors to improve Voc. In this study, pentanary Cu(InGa)(SeS)2 absorbers were prepared by selenization and sulfurization or a sulfurization after selenization (SAS) method. It is found that the “sulfurization degree” defined as a function of temperature and holding time at the sulfurization step is a key factor to enhance the Ga diffusion and improve Voc. It is also verified that increase in the temperature difference between selenization and sulfurization enhances the incorporation of S into the selenide absorber. Applying these findings related to Ga and S, Voc of 642 mV/cell and efficiency of 14.3% are achieved on a 30 cm×30 cm-sized soda-lime glass substrate.  相似文献   

13.
Cu2ZnSnS4 (CZTS) absorbers were grown by sulfurization of Cu/ZnSn/Cu precursors in sulfur atmosphere. The reaction mechanism of CZTS formation from the precursor was analyzed using XRD and Raman spectroscopy. The films with a single phase CZTS were formed at 560 and 580 °C by sulfurization for 30 min. The film grown at 560 °C showed bi-layer morphology with grooved large grains on the top and dense small grains near the bottom of the film. On the other hand, the film grown at 580 °C showed large grains with grooves that are extended from surface top to bottom of the film. The solar cell fabricated with the CZTS film grown at 560 °C showed the best conversion efficiency of 4.59% for 0.44 cm2 with Voc=0.545 V, Jsc=15.44 mA/cm2, and FF=54.6. We found that further improvement of the microstructure of CZTS films can increase the efficiency of CZTS solar cells.  相似文献   

14.
Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ (Ag/BSCF) electrodes were prepared using an electroless deposition technique. The morphology, microstructure and oxygen reduction reaction activity of the resulted Ag/BSCF electrodes were comparatively studied using Fourier transform infrared spectra, environmental scanning electron microscopy, temperature-programmed oxygen desorption, X-ray diffraction, and electrochemical impedance spectroscopy. An area-specific resistance as low as 0.038 Ω cm2 was achieved for N2H4-reduced Ag/BSCF cathode at 600 °C. Carbonates were detected over the BSCF surface during the reduction of silver, which deteriorated both the charge-transfer process and diffusion process of HCHO-reduced Ag/BSCF cathode for the oxygen electrochemical reduction reaction. An anode-supported single cell with an N2H4-reduced Ag/BSCF cathode showed a peak power of 826 mW cm−2 at 600 °C. In comparison, only 672 mW cm−2 was observed with the HCHO-reduced Ag/BSCF cathode.  相似文献   

15.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

16.
Amorphous LiCo1/3Mn1/3Ni1/3O2 thin films were deposited on the NASICON-type Li-ion conducting glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 130 °C. The amorphous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Li/PEO18-Li(CF3SO2)2N/LATSP/LiCo1/3Mn1/3Ni1/3O2/Au all-solid-state cells were fabricated to investigate the electrochemical performance of the amorphous films. It was found that the low-temperature deposited amorphous cathode film shows a high discharge voltage and a high discharge capacity of around 130 mAh g−1.  相似文献   

17.
A series of Cd1−xZnxS thin films were deposited onto indium-doped tin oxide (ITO) coated glass substrates by ultrasonic spray pyrolysis CdCl2, ZnCl2, and CS(NH2)2 aqueous solutions. The XRD patterns revealed that these films processed a wurtzite structure and a series of solid solutions of CdS and ZnS formed. The lattice constants decreased as the x value increased. From the transmittance and reflectance, the optical band gap was estimated to be between 2.45 eV and 3.72 eV, and the band gap increased as the x value increased according to a near linear relationship with the x value. The Mott-Schottky tests revealed that the flat potential shifted negatively as the x value increased. The photo responses agreed with the optical absorption of these films quite well. The current–potential measurements under chopped Xe lamp light irradiation show that the CdS deposited at 300 °C had best photoresponse. Its photoelectrochemical efficiency was estimated to be about 0.95% under 0.73 V bias from two electrodes current–potential tests.  相似文献   

18.
CdSxSe1−x films of different composition (0 < x < 1) were deposited by pulse plating technique at different duty cycles in the range of 10-50%. The films were polycrystalline and exhibited hexagonal structure. The band gap of the films varies from 1.68 to 2.39 eV as the concentration of CdS increases. Energy Dispersive analysis of X-rays (EDAX) measurements indicate that the composition of the films are nearly the same as that of the precursors considered for the deposition. Atomic force microscopy studies indicated that the grain size increased from 20 to 200 nm as the concentration of CdSe increased. Photoelectrochemical (PEC) cell studies indicated that the films of composition CdS0.9Se0.1 exhibited maximum photoactivity. Mott-Schottky studies indicated that the films exhibit n-type behaviour. Spectral response measurements indicated that the photocurrent maxima occurred at the wavelength value corresponding to the band gap of the films.  相似文献   

19.
Nanostructured TiO2 thin films were deposited on glass substrates by sol-gel dip coating technique. The structural, morphological and optical characterizations of the as deposited and annealed films were carried out using X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), and UV-vis transmittance spectroscopy. As-deposited films were amorphous, and the XRD studies showed that the formation of anatase phase was initiated at annealing temperature close to 400 °C. The grain size of the film annealed at 600 °C was about 20 nm. The lattice parameters for the films annealed at 600 °C were a = 3.7862 ? and c = 9.5172 ?, which is close to the reported values of anatase phase. Band gap of the as deposited film was estimated as 3.42 eV and was found to decrease with the annealing temperature. At 550 nm the refractive index of the films annealed at 600 °C was 2.11, which is low compared to a pore free anatase TiO2. The room temperature electrical resistivity in the dark was of the order of 4.45 × 106 ohm-cm. Photocatalytic activity of the TiO2 films were studied by monitoring the degradation of aqueous methylene blue under UV light irradiation and was observed that films annealed above 400 °C had good photocatalytic activity which is explained as due to the structural and morphological properties of the films.  相似文献   

20.
The electrical properties of solvent-free, PEO–LiTFSI solid polymer electrolytes (SPEs), incorporating different N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, PYR1ATFSI, ionic liquids (ILs), are reported. For this purpose, PYR1ATFSI materials containing side alkyl groups with different chain-length and branching, i.e., n-propyl, sec-propyl, n-butyl, iso-butyl, sec-butyl and n-pentyl, were properly synthesized and homogeneously incorporated into the SPE samples without phase separation. The addition of ILs to PEO–LiTFSI electrolytes results in a large increase of the conductivity and in a decrease of the interfacial resistance with the lithium metal anode. Most of the PEO–LiTFSI–PYR1ATFSI samples showed similar ionic conductivities (>10−4 S cm−1 at 20 °C) and stable interfacial resistance values (400 Ω cm2 at 40 °C and 3000 Ω cm2 at 20 °C) upon several months of storage. Preliminary battery tests have shown that Li/P(EO)10LiTFSI + 0.96 PYR1ATFSI/LiFePO4 solid-state cells are capable to deliver a capacity of 125 mAh g−1 and 100 mAh g−1 at 30 °C and 25 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号