首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The microstructural evolution characteristics of the thermomechanically affected zone (TMAZ) alloy during friction stir processing (FSP) of thixoformed (TF) AZ91D alloy were investigated. Simultaneously, a surface composite layer reinforced by SiC particles (SiCps) was prepared on the alloy by FSP and the corresponding tribological properties were examined. The experimental results indicate that dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are ...  相似文献   

2.
Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reactions process.TiC and Ti5Si3 were two important intermediate phases during the whole reactions.The microstructure characteristics of the Ti3SiC2/TiB2 composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The experimental results show that the grains of Ti3SiC2/TiB2 composite are structured in a layered form,and the formation of TiB2 particles as reinforcements with elongated or equiaxed shape distributes in Ti3SiC2 matrix.  相似文献   

3.
A SiCw|A| compostie was fabricated through a squeeze cast route and cold rolled to about 30%,50% and 70% reduction in thickness.respectively.The length of whiskers in the composite before and after rolling was examined using SEM.Some of the rolled composites were annealed by recrystallizing to remove the work hardening of the matrix alloy.The hardness of the rolled and annealed SiC A SiCw|A| composites was examined and then associated with the change of the whisker length and the work hardening of the matrix alloy.It was found that the hardness was a function of the degree of cold rolling .For the cold rolled composites .with the increase in the degree of cold rolling .the hardness increases at first,and decreases when the degree of cold rolling excecds 50%.For the annealed ones .however,the hardness monotonously with the increase in rolling degree.The different changes in hardness beticeen the rolled and annealed composites coukl be attributed to a result of the competition benceen the work hardening of the matrix resulting from the cold rolling and the work softening arising from the change of whisker length.  相似文献   

4.
Preparation of Ti3SiC2 with Aluminum by Means of Spark Plasma Sintering   总被引:1,自引:0,他引:1  
Polycrystalline bulk Ti3SiC2 material with a high purity and density was fabricated by spark plasma sintering from the elemental powder mixture with starting composition of Ti3Si3Si1-xAlxC2 , where x = 0. 05 -0.2. X-ray diffraction patterns and scanning electron microscopy photographs of the fully dense samples show that a proper addition of aluminum promotes the formation, and accelerates the crystal growth rate of Ti3SIC2, conse-quently results in a high purity of the prepared samples. The synthesized Ti3 SiC2 is in plane-shape with a size of about 10- 25μm in the elongated dimension. Solid solution of aluminum decreases the thermal stability of Ti3SiC2, and lowers the temperature of Ti3SiC2 decomposeing to be 1300 ℃ .  相似文献   

5.
The reactive process for Al/SiCP composite was studied. SiC particles were in-situ coated by the exothermal reaction of SiC-Ti powder compact in Al melt bath, and easily incorporated into Al melt. The detailed study was carried out to understand the microstructures of the reacted SiC particles. During the reaction and consequent mixing, the successive processes include in-situ coating on the reacted SiC particles, coat dissolution and SiCP splitting. The tensile mechanical properties of 6013Al/SiCP composite processed by the present technology showed that the reacted SiCP considerably reinforced the 6013 matrix. Foundation item: The Key Program of the 9th Five-year Plan of China(No. 95-YS-005) Biography of the first author: CHEN Kang-hua, professor, born on Aug. 30, 1962, received Ph. D degree in 1991, majoring in Al alloy, Al matrix composite and powder metallurgy.  相似文献   

6.
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ℃. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearing process under elevated temperature.  相似文献   

7.
A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite α-Ee (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.  相似文献   

8.
The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5–6 μm in the elongated direction. When the sintering temperature, soaking time and heating rate were 1 400 °C, 1 h and 10 °C·min?1, respectively, the highest relative density of Ti3SiC2 specimens could reach 97.8%. Meanwhile, the lowest coefficient of friction (COF) and wear rate (WR) of the Ti3SiC2 samples were 0.55 and 1.37×10?3 mm3(Nm)?1 at a sliding speed of 0.35 m/s, load pressure of 10 N and ambient condition, respectively. The COF of the Ti3SiC2 sample reduced with the increasing of the load pressure, while the WRs fluctuated little. The WR increased with the increasing of the sliding speed, and weakly influenced the COF. These changing behaviors could be attributed to the presence and coverage of the amorphous mixture oxide film of Ti, Si, Al, and Fe on the Ti3SiC2 friction surface. The self-antifriction mechanism led to reducing of the COF. The increasing of the WR was attributed to the wearing consumption.  相似文献   

9.
The effect of annealing on microstructure, adhesive and frictional properties of GeSb2Te4 films were experimentally studied. The GeSb2Te4 films were prepared by radio frequency (RF) magnetron sputtering, and annealed at 200℃ and 340℃ under vacuum circumstance, respectively. The adhesion and friction experiments were mainly conducted with a lateral force microscope (LFM) for the GeSb2Te4 thin films before and after annealing. Their morphology and phase structure were analyzed by using atomic force microscopy (AFM) and X-ray Diffraction (XRD) techniques, and the nanoindention was employed to evaluate their hardness values. Moreover, an electric force microscope (EFM) was used to measure the surface potential. It is found that the deposited GeSb2Te4 thin film undergoes an amorphous-to-fcc and fcc-to-hex structure transition; the adhesion has a weaker dependence on the surface roughness, but a certain correlation with the surface potential of GeSb2Te4 thin films. And the friction behavior of GeSb2Te4 thin films follows their adhesion behavior under a lower applied load. However, such a relation is replaced by the mechanical behavior when the load is relatively higher. Moreover, the GeSb2Te4 thin film annealed at 340℃ presents a lubricative property.  相似文献   

10.
The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage (or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL (ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.  相似文献   

11.
Al18B4O33 whisker was coated by SnO2 particles using a chemical precipitation method, and an aluminum matrix composite reinforced by the coated whisker was fabricated by squeeze casting technique. It is found that the SnO2 coating can react with aluminum matrix during squeeze casting process, and Sn particles are induced near the interface between Al18B4O33 whisker and matrix. The tensile test at room temperature indicated that the tensile strength of Al18B4O33 whisker reinforced aluminum matrix composite can be enhanced by suitable content of SnO2 coating. The composites with various whisker coating contents exhibit maximum tensile plasticity at about 300 ℃, and the composite with a suitable whisker coating content could enhance its tensile plasticity evidently, which suggest that an Al18B4O33 whisker-Al composite with both high strength at room temperature and high formability at elevated temperature can be designed.  相似文献   

12.
BN-SiO2-SiAlON composite ceramics were successfully prepared by the means of hot pressed sintering. Xe plasma flow generated by Hall Thruster was used for sputtering the surface of the samples in order to evaluate the plasma erosion resistance. XRD, TEM, SEM, and LSCM were used to characterize the phase composition and morphologies of as-made composite ceramics before and after Xe plasma erosion. The ceramics were composed of h-BN, fused silica, and SiAlON, which maintained structural stability during the process of Xe plasma sputtering. In conclusion, comparing with BN-SiO2 composite ceramics, the plasma erosion rate of BN-SiO2-SiAlON composite ceramics decreases significantly at first then rises with the increase of AlN addition. Erosion pits can be observed by using SEM on the surface after plasma sputtering, which demonstrates that the BN grains have dropped off the surface. In addition, mechanical denudation by high-speed Xe ions is recognized as the injury mechanism for the BN-matrix composite materials.  相似文献   

13.
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.  相似文献   

14.
为提高铝合金表面耐磨性能,采用微弧氧化(MAO)技术在硅酸盐电解液中对2024铝合金进行表面处理,制备微弧氧化陶瓷层;然后通过浸泡法在陶瓷层表面覆盖一层油性涂层,形成复合膜层,以期提高铝合金表面耐磨性能。利用扫描电镜(SEM)和X射线衍射仪(XRD)分别观察复合膜层的表面形貌及物相组成;利用原子力显微镜AFM测试复合膜层的表面粗糙度;利用摩擦磨损试验仪分析复合膜层的摩擦系数。在SEM的观察下复合膜层比微弧氧化陶瓷层更为平整。另外,AFM的结果显示复合膜层的表面粗糙度比微弧氧化陶瓷层降低了73%左右;摩擦磨损检测显示复合膜层的摩擦系数在0.1左右,波动幅度较小,而微弧氧化陶瓷层和铝合金的摩擦系数达0.4左右,波动幅度较大。  相似文献   

15.
An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride (TiCl4) and sodium silicate (Na2nSiO2). After gelation, solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure. Microstructural analyses by transmission electron microscope (TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel, and the Brunauer–Emmett–Teller (BET) analysis shows that the specific surface area of the composite reaches 605 m2/g, and the average pore size is 9.7 nm. Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange (MO), and the decolorizing efficiency of MO is detected as 84.9% after 210 mins exposure to UV light irradiation. Degraded gel suspends in the water so as to separate from solution for reuse, and after 4 times recycling, 70% degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.  相似文献   

16.
The solid solution characteristics of Pb(B1/3Nb2/3)O3-based (B=Zn^2+, Mg^2+, Ni^2+) composite ceramics prepared by two-phase mixed-sintering method were developed based on dielectric measurements. Results show that there are double dielectric peaks for PZN-based composite ceramic, implying two phases coexist. However single dielectric peak was presented in PMN- and PNN-based composite ceramics, respectively. It is indicated that obvious solid solution reaction exists during the sintering process of these two systems. The effects of B-site ion difference on the solid solution characteristics were discussed by crystal chemistry. SEM was employed to investigated the microstructures of composite ceramics. The influences of solid solution reaction on grain growth were discussed.  相似文献   

17.
Monooctadecyl maleate, as a polymerizable surfactant, was synthesized by the mono-esterification of maleic anhydride and octadecanol, and was utilized to surface-modify nano-Fe3O4 particles. A polymerizable magnetic fluid was obtained by directly dispersing modified nano-Fe3O4 particles into styrene monomer, and the polystyrene/nano-Fe3O4 composite was prepared through free radical polymerization of polymerizable magnetic fluid. The structure and dispersion status in different dispersion phases of modified nano-Fe3O4 particles were studied by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The experimental results show that the nano-Fe3O4 particles modified by monooctadecyl maleate with the size of about 7–10 nm can be uniformly dispersed into styrene and fixed in the composite during the procedure of polymerization. Thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM) indicate that the thermal stability of polystyrene/nano-Fe3O4 composite is improved compared to that of pure polystyrene, and the composite is a sort of superparamagnetic materials.  相似文献   

18.
Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and differential scanning calorimeter (DSC) were used to examine surface morphology and microstructure of the coating. Aqueous corrosion was done in 3%NaCl+5%H2SO4 solution and high temperature oxidation was done at 750 °C in air. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. At high temperature, Ni3P precipitation and Ni crystallization took place in both coatings at different temperatures. Aqueous corrosion property and high temperature oxidation property of the composite coating were remarkably improved due to the coating’s microstructure change and the rare earth doping effect. During the co-deposition process, some Ce n+(n=3, 4) ions may be adsorbed to metal/solution interface and hinder nickel deposition. Ni-P/CeO2 coating’s perfect amorphous structure results from the hindered crystal- typed deposition of nickel and the promoted deposition of phosphorous.  相似文献   

19.
The nanocomplex oxides of Sn-In and Sn-In-Ti were prepared by controlled co-precipitation method as sensing materials of semiconductor gas sensors for detection of CO, CH4 and NO2. Through manipulating the Sn/In cation ratio, metal salt total concentration, precipitation pH value and aging time, the nanocrystalline powders were successfully derived with chemical homogeneity and superior thermal stability, compared with the single component oxides. The particle size and morphology, surface area, and thermal and phase stabilities were characterized using TEM, TG-DTA, BET and XRD. The sensing tests showed that the Sn-In composites exhibit high sensitivity and selectivity for CO and NO2. The introduction of TiO2 enhanced CH4 sensitivity and selectivity, particularly, additives of Pd and Al2O3 as a dopant and surface modification greatly enhanced the sensing properties. The sensitivity depended on the composition of composites, calcination temperature and operating temperature. The optimal values were (25%In2O3- 75%SnO2)-20%TiO2 for ternary composite, 600 and 300℃, respectively. Temperature-programmed desorption (TPD) studies were employed to explain the gas adsorption behavior displayed by the surface of nanocomposites and X-ray photoelectron spectroscopic (XPS) analysis was used to confirm the electronic interactions existing between oxide components. The sensing mechanism of the nanocomposites was attributed to chemical and electronic synergistic effects.  相似文献   

20.
Nano-SiO2/polypropylene composite was prepared by melt-blending process. The nano-SiO2 particles were organized by wet process surface treatment with silane coupling agent KH-570. The effect of mass fraction of nano-SiO2 particles and dosage of KH-570 on the toughening and strengthening of PP matrix were investigated based on the fractography of impact notch and the analysis of crystal structure by X-ray and dispersive structure of nano-SiO2 by TEM. Results show that the impact and flexural strength and modulus of the composite are improved obviously with low loading of nano-SiO2 (3 wt%-5 wt%), and the izod impact strength of PP increases twice with 4 wt% nano-SiO2. The nano-SiO2 particles treated can disperse into the matrix resin, which has evident heterogeneous nucleation effects on the crystallization of PP. The optimal toughening and strengthening effects of PP matrix can be obtained when the content of nano-SiO2 and KH-570 are 4 wt% and 3 wt%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号