首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.  相似文献   

2.
Wavelet transforms for detecting microcalcifications in mammograms   总被引:1,自引:0,他引:1  
Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms.  相似文献   

3.
The presence of microcalcification clusters in mammograms contributes evidence for the diagnosis of early stages of breast cancer. In many cases, microcalcifications are subtle and their detection can benefit from an automated system serving as a diagnostic aid. The potential contribution of such a system may become more significant as the number of mammograms screened increases to levels that challenge the capacity of radiology clinics. Many techniques for detecting microcalcifications start with a segmentation algorithm that indicates all candidate structures for the subsequent phases. Most algorithms used to segment microcalcifications have aspects that might raise operational difficulties, such as thresholds or windows that must be selected, or parametric models of the data. We present a new segmentation algorithm and compare it to two other algorithms: the multi-tolerance region-growing algorithm, which operates without the aspects mentioned above, and the active contour model, which has not been applied previously to segment microcalcifications. The new algorithm operates without threshold or window selection or parametric data models, and it is more than an order of magnitude faster than the other two  相似文献   

4.
Clusters of microcalcifications in mammograms are an important early sign of breast cancer. This paper presents a computer-aided diagnosis (CAD) system for the automatic detection of clustered microcalcifications in digitized mammograms. The proposed system consists of two main steps. First, potential microcalcification pixels in the mammograms are segmented out by using mixed features consisting of wavelet features and gray level statistical features, and labeled into potential individual microcalcification objects by their spatial connectivity. Second, individual microcalcifications are detected by using a set of 31 features extracted from the potential individual microcalcification objects. The discriminatory power of these features is analyzed using general regression neural networks via sequential forward and sequential backward selection methods. The classifiers used in these two steps are both multilayer feedforward neural networks. The method is applied to a database of 40 mammograms (Nijmegen database) containing 105 clusters of microcalcifications. A free-response operating characteristics (FROC) curve is used to evaluate the performance. Results show that the proposed system gives quite satisfactory detection performance. In particular, a 90% mean true positive detection rate is achieved at the cost of 0.5 false positive per image when mixed features are used in the first step and 15 features selected by the sequential backward selection method are used in the second step. However, we must be cautious when interpreting the results, since the 20 training samples are also used in the testing step.  相似文献   

5.
A review of wavelets in biomedical applications   总被引:26,自引:0,他引:26  
We present an overview of the various uses of the wavelet transform (WT) in medicine and biology. We start by describing the wavelet properties that are the most important for biomedical applications. In particular we provide an interpretation of the the continuous wavelet transform (CWT) as a prewhitening multiscale matched filter. We also briefly indicate the analogy between the WT and some of the the biological processing that occurs in the early components of the auditory and visual system. We then review the uses of the WT for the analysis of 1-D physiological signals obtained by phonocardiography, electrocardiography (ECG), mid electroencephalography (EEG), including evoked response potentials. Next, we provide a survey of wavelet developments in medical imaging. These include biomedical image processing algorithms (e.g., noise reduction, image enhancement, and detection of microcalcifications in mammograms), image reconstruction and acquisition schemes (tomography, and magnetic resonance imaging (MRI)), and multiresolution methods for the registration and statistical analysis of functional images of the brain (positron emission tomography (PET) and functional MRI (fMRI)). In each case, we provide the reader with same general background information and a brief explanation of how the methods work  相似文献   

6.
Wavelet transform methods for object detection and recovery   总被引:4,自引:0,他引:4  
We show that a biorthogonal spline wavelet closely approximates the prewhitening matched filter for detecting Gaussian objects in Markov noise. The filterbank implementation of the wavelet transform acts as a hierarchy of such detectors operating at discrete object scales. If the object to be detected is Gaussian and its scale happens to coincide with one of those computed by the wavelet transform, and if the background noise is truly Markov, then optimum detection is realized by thresholding the appropriate subband image. In reality, the Gaussian may be a rather coarse approximation of the object, and the background noise may deviate from the Markov assumption. In this case, we may view the wavelet decomposition as a means for computing an orthogonal feature set for input to a classifier. We use a supervised linear classifier applied to feature vectors comprised of samples taken from the subbands of an N-octave, undecimated wavelet transform. The resulting map of test statistic values indicates the presence and location of objects. The object itself is reconstructed by using the test statistic to emphasize wavelet subbands, followed by computing the inverse wavelet transform. We show two contrasting applications of the wavelets-based object recovery algorithm. For detecting microcalcifications in digitized mammograms, the object and noise models closely match the real image data, and the multiscale matched filter paradigm is highly appropriate. The second application, extracting ship outlines in noisy forward-looking infrared images, is presented as a case where good results are achieved despite the data models being less well matched to the assumptions of the algorithm.  相似文献   

7.
钙化信息是乳腺癌早期诊断的一个重要依据,针对钙化点检测检出率较低和假阳性较高的问题,提出一种基于多尺度空间滤波和l1范数最近邻分类的乳腺图像微钙化点检测算法.首先利用多尺度空间滤波方法得到原图像的多尺度显著特征图,然后通过基于人眼视觉特性的钙化点分割方法得到粗检测钙化点的二值图像,并送入l1范数最近邻分类器去除假阳性点...  相似文献   

8.
This paper presents an approach for detecting micro-calcifications in digital mammograms employing wavelet-based subband image decomposition. The microcalcifications appear in small clusters of few pixels with relatively high intensity compared with their neighboring pixels. These image features can be preserved by a detection system that employs a suitable image transform which can localize the signal characteristics in the original and the transform domain. Given that the microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands, suppressing the low-frequency subband, and, finally, reconstructing the mammogram from the subbands containing only high frequencies. Preliminary experiments indicate that further studies are needed to investigate the potential of wavelet-based subband image decomposition as a tool for detecting microcalcifications in digital mammograms  相似文献   

9.
Cancerous tumor mass is one of the major types of breast cancer. When cancerous masses are embedded in and camouflaged by varying densities of parenchymal tissue structures, they are very difficult to be visually detected on mammograms. This paper presents an algorithm that combines several artificial intelligent techniques with the discrete wavelet transform (DWT) for detection of masses in mammograms. The AI techniques include fractal dimension analysis, multiresolution markov random field, dogs-and-rabbits algorithm, and others. The fractal dimension analysis serves as a preprocessor to determine the approximate locations of the regions suspicious for cancer in the mammogram. The dogs-and-rabbits clustering algorithm is used to initiate the segmentation at the LL subband of a three-level DWT decomposition of the mammogram. A tree-type classification strategy is applied at the end to determine whether a given region is suspicious for cancer. We have verified the algorithm with 322 mammograms in the Mammographic Image Analysis Society Database. The verification results show that the proposed algorithm has a sensitivity of 97.3% and the number of false positive per image is 3.92.  相似文献   

10.
This paper deals with the problem of texture feature extraction in digital mammograms. We use the extracted features to discriminate between texture representing clusters of microcalcifications and texture representing normal tissue. Having a two-class problem, we suggest a texture feature extraction method based on a single filter optimized with respect to the Fisher criterion. The advantage of this criterion is that it uses both the feature mean and the feature variance to achieve good feature separation. Image compression is desirable to facilitate electronic transmission and storage of digitized mammograms. In this paper, we also explore the effects of data compression on the performance of our proposed detection scheme. The mammograms in our test set were compressed at different ratios using the Joint Photographic Experts Group compression method. Results from an experimental study indicate that our scheme is very well suited for detecting clustered microcalcifications in both uncompressed and compressed mammograms. For the uncompressed mammograms, at a rate of 1.5 false positive clusters/image our method reaches a true positive rate of about 95%, which is comparable to the best results achieved so far. The detection performance for images compressed by a factor of about four is very similar to the performance for uncompressed images.  相似文献   

11.
Segmentation of microcalcifications in mammograms   总被引:4,自引:0,他引:4  
A systematic method for the detection and segmentation of microcalcifications in mammograms is presented. It is important to preserve size and shape of the individual calcifications as exactly as possible. A reliable diagnosis requires both rates of false positives as well as false negatives to be extremely low. The proposed approach uses a two-stage algorithm for spot detection and shape extraction. The first stage applies a weighted difference of Gaussians filter for the noise-invariant and size-specific detection of spots. A morphological filter reproduces the shape of the spots. The results of both filters are combined with a conditional thickening operation. The topology and the number of the spots are determined with the first filter, and the shape by means of the second. The algorithm is tested with a series of real mammograms, using identical parameter values for all images. The results are compared with the judgement of radiological experts, and they are very encouraging. The described approach opens up the possibility of a reproducible segmentation of microcalcifications, which is a necessary precondition for an efficient screening program.  相似文献   

12.
Breast cancer continues to be a significant public health problem in the United States. Approximately, 182,000 new cases of breast cancer are diagnosed and 46,000 women die of breast cancer each year. Even more disturbing is the fact that one out of eight women in the United States will develop breast cancer at some point during her lifetime. Since the cause of breast cancer remains unknown, primary prevention becomes impossible. Computer-aided mammography is an important and challenging task in automated diagnosis. It has great potential over traditional interpretation of film-screen mammography in terms of efficiency and accuracy. Microcalcifications are the earliest sign of breast carcinomas and their detection is one of the key issues for breast cancer control. In this study, a novel approach to microcalcification detection based on fuzzy logic technique is presented. Microcalcifications are first enhanced based on their brightness and nonuniformity. Then, the irrelevant breast structures are excluded by a curve detector. Finally, microcalcifications are located using an iterative threshold selection method. The shapes of microcalcifications are reconstructed and the isolated pixels are removed by employing the mathematical morphology technique. The essential idea of the proposed approach is to apply a fuzzified image of a mammogram to locate the suspicious regions and to interact the fuzzified image with the original image to preserve fidelity. The major advantage of the proposed method is its ability to detect microcalcifications even in very dense breast mammograms. A series of clinical mammograms are employed to test the proposed algorithm and the performance is evaluated by the free-response receiver operating characteristic curve. The experiments aptly show that the microcalcifications can be accurately detected even in very dense mammograms using the proposed approach  相似文献   

13.
In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80).  相似文献   

14.
Clustered microcalcifications on X-ray mammograms are an important sign for early detection of breast cancer. Texture-analysis methods can be applied to detect clustered microcalcifications in digitized mammograms. In this paper, a comparative study of texture-analysis methods is performed for the surrounding region-dependence method, which has been proposed by the authors, and conventional texture-analysis methods, such as the spatial gray-level dependence method, the gray-level run-length method, and the gray-level difference method. Textural features extracted by these methods are exploited to classify regions of interest (ROI's) into positive ROI's containing clustered microcalcifications and negative ROI's containing normal tissues. A three-layer backpropagation neural network is used as a classifier. The results of the neural network for the texture-analysis methods are evaluated by using a receiver operating-characteristics (ROC) analysis. The surrounding region-dependence method is shown to be superior to the conventional texture-analysis methods with respect to classification accuracy and computational complexity.  相似文献   

15.
This paper introduces a novel nonlinear multiscale wavelet diffusion method for ultrasound speckle suppression and edge enhancement. This method is designed to utilize the favorable denoising properties of two frequently used techniques: the sparsity and multiresolution properties of the wavelet, and the iterative edge enhancement feature of nonlinear diffusion. With fully exploited knowledge of speckle image models, the edges of images are detected using normalized wavelet modulus. Relying on this feature, both the envelope-detected speckle image and the log-compressed ultrasonic image can be directly processed by the algorithm without need for additional preprocessing. Speckle is suppressed by employing the iterative multiscale diffusion on the wavelet coefficients. With a tuning diffusion threshold strategy, the proposed method can improve the image quality for both visualization and auto-segmentation applications. We validate our method using synthetic speckle images and real ultrasonic images. Performance improvement over other despeckling filters is quantified in terms of noise suppression and edge preservation indices.  相似文献   

16.
Chromosome image enhancement using multiscale differential operators   总被引:2,自引:0,他引:2  
Chromosome banding patterns are very important features for karyotyping, based on which cytogenetic diagnosis procedures are conducted. Due to cell culture, staining, and imaging conditions, image enhancement is a desirable preprocessing step before performing chromosome classification. In this paper, we apply a family of differential wavelet transforms (Wang and Lee, 1998), (Wang, 1999) for this purpose. The proposed differential filters facilitate the extraction of multiscale geometric features of chromosome images. Moreover, desirable fast computation can be realized. We study the behavior of both banding edge pattern and noise in the wavelet transform domain. Based on the fact that image geometrical features like edges are correlated across different scales in the wavelet representation, a multiscale point-wise product (MPP) is used to characterize the correlation of the image features in the scale-space. A novel algorithm is proposed for the enhancement of banding patterns in a chromosome image. In order to compare objectively the performance of the proposed algorithm against several existing image-enhancement techniques, a quantitative criteria, the contrast improvement ratio (CIR), has been adopted to evaluate the enhancement results. The experimental results indicate that the proposed method consistently outperforms existing techniques in terms of the CIR measure, as well as in visual effect. The effect of enhancement on cytogenetic diagnosis is further investigated by classification tests conducted prior to and following the chromosome image enhancement. In comparison with conventional techniques, the proposed method leads to better classification results, thereby benefiting the subsequent cytogenetic diagnosis.  相似文献   

17.
Mammographic feature enhancement by multiscale analysis   总被引:26,自引:0,他引:26  
Introduces a novel approach for accomplishing mammographic feature analysis by overcomplete multiresolution representations. The authors show that efficient representations may be identified within a continuum of scale-space and used to enhance features of importance to mammography. Methods of contrast enhancement are described based on three overcomplete multiscale representations: 1) the dyadic wavelet transform (separable), 2) the phi-transform (nonseparable, nonorthogonal), and 3) the hexagonal wavelet transform (nonseparable). Multiscale edges identified within distinct levels of transform space provide local support for image enhancement. Mammograms are reconstructed from wavelet coefficients modified at one or more levels by local and global nonlinear operators. In each case, edges and gain parameters are identified adaptively by a measure of energy within each level of scale-space. The authors show quantitatively that transform coefficients, modified by adaptive nonlinear operators, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. The authors' results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. They demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology, one can improve chances of early detection while requiring less time to evaluate mammograms for most patients.  相似文献   

18.
Clustered microcalcifications on X-ray mammograms are an important sign in the detection of breast cancer. A statistical texture analysis method, called the surrounding region dependence method (SRDM), is proposed for the detection of clustered microcalcifications on digitized mammograms. The SRDM is based on the second-order histogram in two surrounding regions. This method defines four textural features to classify region of interests (ROIs) into positive ROIs containing clustered microcalcifications and negative ROIs of normal tissues. The database is composed of 64 positive and 76 negative ROI images, which are selected from digitized mammograms with a pixel size of 100 × 100 m2 and 12 bits per pixel. An ROI is selected as an area of 128 × 128 pixels on the digitized mammograms. In order to classify ROIs into the two types, a three-layer backpropagation neural network is employed as a classifier. A segmentation of individual microcalcifications is also proposed to show their morphologies. The classification performance of the proposed method is evaluated by using the round-robin method and a free-response receiver operating-characteristics (FROC) analysis. A receiver operating-characteristics (ROC) analysis is employed to present the results of the round-robin testing for the case of several hidden neurons. The area under the ROC curve, A z, is 0.997, which is achieved in the case of 4 hidden neurons. The FROC analysis is performed on 20 cropped images. A cropped image is selected as an area of 512 × 512 pixels on the digitized mammograms. In terms of the FROC, a sensitivity of more than 90% is obtained with a low false-positive (FP) detection rate of 0.67 per cropped image.  相似文献   

19.
一种基于小波变换的非线性红外图像增强算法   总被引:1,自引:0,他引:1  
针对红外图像对比度低,噪声干扰大,用传统增强算法增强时,增大噪音的问题,提出了一种基于小波变换的非线性红外图像增强算法.该算法先对原始图像进行小波变换获得低频和高频系数,接着根据低频系数的特点设计了非线性函数对低频系数进行增强,并对高频系数进行小波去噪,最后通过小波重构得到增强的图像.仿真实验表明,该方法不仅解决了红外图像对比度低的问题,并且降低了噪声,突出了图像细节,该方法无论是增强效果还是抗噪效果都明显优于传统的图像增强方法.  相似文献   

20.
Clustered microcalcifications (MC) in mammograms can be an important early sign of breast cancer in women. Their accurate detection is important in computer-aided detection (CADe). In this paper, we propose the use of a recently developed machine-learning technique--relevance vector machine (RVM)--for detection of MCs in digital mammograms. RVM is based on Bayesian estimation theory, of which a distinctive feature is that it can yield a sparse decision function that is defined by only a very small number of so-called relevance vectors. By exploiting this sparse property of the RVM, we develop computerized detection algorithms that are not only accurate but also computationally efficient for MC detection in mammograms. We formulate MC detection as a supervised-learning problem, and apply RVM as a classifier to determine at each location in the mammogram if an MC object is present or not. To increase the computation speed further, we develop a two-stage classification network, in which a computationally much simpler linear RVM classifier is applied first to quickly eliminate the overwhelming majority, non-MC pixels in a mammogram from any further consideration. The proposed method is evaluated using a database of 141 clinical mammograms (all containing MCs), and compared with a well-tested support vector machine (SVM) classifier. The detection performance is evaluated using free-response receiver operating characteristic (FROC) curves. It is demonstrated in our experiments that the RVM classifier could greatly reduce the computational complexity of the SVM while maintaining its best detection accuracy. In particular, the two-stage RVM approach could reduce the detection time from 250 s for SVM to 7.26 s for a mammogram (nearly 35-fold reduction). Thus, the proposed RVM classifier is more advantageous for real-time processing of MC clusters in mammograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号