共查询到19条相似文献,搜索用时 46 毫秒
1.
针对粒子群优化算法容易陷入局部极值点、进化后期收敛速度慢、精度较差等缺点,把Hooke-Jeeves模式搜索方法作为粒子群优化算法的一个局部搜索算子,嵌入到粒子群算法中,Hooke-Jeeves的强局部搜索能力提高了粒子群优化算法的局部收敛速度和精度,从而提出了一种混合粒子群优化算法。通过基准函数和实例测试进行了验证,结果表明,提出的混合算法的收敛速度和精度均优于粒子群优化算法。 相似文献
2.
王介生 《石油化工高等学校学报》2007,20(3):41-44
粒子群优化算法是一类全局随机进化算法,算法通过粒子间的相互作用发现复杂搜索空间中的最优区域。根据粒子群算法对整个参数空间进行高效并行搜索的特点,提出了最小二乘法和粒子群优化算法相结合的混合学习算法对自适应神经-模糊推理系统网络结构参数进行优化设计。混合学习算法提高了网络参数辨识的收敛速度,仿真结果表明本算法的有效性。 相似文献
3.
基于改进的粒子群和遗传算法的混合优化算法 总被引:1,自引:0,他引:1
分析粒子群算法在求解组合优化问题中的运行原理,对警车分布的优化问题建立了粒子群优化的数学模型,对基本粒子群优化算法中的速度范围、惯性权重等参数进行了改进,并通过仿真与基本粒子群算法比较,显示改进的粒子群算法,提高了优化结果.在改进的粒子群算法中引入遗传算法,将形成的新混合算法应用到求解警车最优执勤地点的分布问题,并与遗传算法和改进的粒子群算法仿真比较.结果表明,混合优化算法在收敛速度和精度上均有明显的提高. 相似文献
4.
基于差分进化算法在收敛快速性及粒子群算法在种群多样性保持上的优势,提出一种新的混合启发式优化算法,其基本思路是将粒子群种群作为辅助变异算子,与差分进化算法种群进行交叉操作,产生的新子代继承了父代和母代的优势特性,从而避免了单一算法的早熟收敛和收敛速度过慢的问题。通过与已有的改进算法仿真对比,该算法能够有效的跳出局部极值防止算法早熟且收敛速度很快。最后,借鉴已有文献方法对混合算法在B2C路径优化问题中的工程应用进行了实验研究。 相似文献
5.
存分析现有的一些粒子群算法的基础上,给出了一种指数递减改变惯性权重和对称扰动的改进粒子群算法.对称扰动的引入,增强了单个粒子的搜索性能,使得群体全局寻优能力得到提升.仿真测试结果表明,改进的算法具有更好的求解精度和较快的计算速度. 相似文献
6.
针对粒子群算法易早熟收敛的局限性,提出了一种带变异的改进自适应粒子群优化(PSO)算法.该算法根据群体适应度变化率自动调整惯性权值,根据当前种群的平均粒距确定种群中部分粒子的变异概率.对于大型锌电解过程中的整流供电调度问题,建立了以用电费用及耗电量最少为目标的整流供电优化调度模型,并应用改进算法进行优化求解,获得最优调度方案.仿真结果证明了该算法的有效性.工业应用效果表明,按最优调度方案组织生产显著降低了用电费用,同时有利于电网负荷的平衡运行. 相似文献
7.
提出了双评价粒子群优化算法.该算法可对迭代后的粒子进行位置和适应值的双评价,并可根据评价结果对适应值和位置不好的粒子进行柯西变异或者高斯变异,克服了标准粒子群优化算法因对迭代后粒子的优劣不进行评价而使部分粒子进行无意义的探索和开发的缺陷.实验结果表明改进的算法加快了粒子群的探索速度,提高了开发全局最优解的精度. 相似文献
8.
针对复杂电磁装置优化问题中目标函数计算次数过多的问题,提出了一种基于移动最小二乘法(MLS)和粒子群优化算法(PSO)的快速全局优化方法.该方法利用基于MLS的表面响应模型,重构原始的优化问题,采用加权PSO算法对重构后的目标函数进行寻优,再使用拟牛顿法,对原优化问题直接寻优,从而得到优化问题最终的最优解,并对基准测试函数和实际电磁装置问题进行优化计算.结果表明,与加权PSO相比,该算法能找到优化问题的全局最优解,并能有效的减少目标函数的计算次数,节省了计算时间,提高了计算效率. 相似文献
9.
改进遗传算法与粒子群优化算法及其对比分析 总被引:18,自引:0,他引:18
进化算法作为一类新的优化搜索方法,广泛应用于各种优化问题.现对简单遗传算法进行了改进,采用实值编码,并与模拟退火算法及基于适值排序和随机选择的方法相结合,形成了改进遗传算法.同时还介绍了一种新的进化算法一粒子群优化算法.将这两种优化算法应用于函数优化,并对优化结果进行了对比分析.比较结果表明,改进遗传算法和粒子群优化算法都可以在函数优化方面表现出较好的健壮性,但在找寻最优解的效率上,粒子群优化算法较好. 相似文献
10.
11.
克里金法是广泛应用的空间插值方法,但仅考虑单一因素的普通克里金法在确定山地斜坡土层厚度中存在较大误差。针对普通克里金法中的不足之处,提出了一种确定土层厚度的基于粒子群优化的协同克里金法。该方法首先用粒子群优化算法拟合半变异函数,然后将该函数用于以高程值作为辅助变量的协同克里金法中,并根据均方根误差来评价土层厚度的不确定性。将该方法应用于重庆万盛某边坡土层厚度的确定,通过交叉验证,结果表明:与普通克里金插值法相比较,考虑高程的协同克里金法插值的均方根误差降低了39.32%;基于粒子群优化的普通克里金法和协同克里金法的均方根误差分别降低了28.79%和48.45%。基于粒子群优化的协同克里金插值法对提高土层厚度的插值精度有较大作用。 相似文献
12.
基于改进粒子群算法的组合测试数据生成 总被引:1,自引:0,他引:1
针对传统粒子群优化算法生成测试数据容易产生早熟收敛而陷入局部最优的问题,提出一种基于改进粒子群算法的组合测试数据生成算法。该算法在粒子群算法的基础上引入一种惯性权重自适应调整策略,根据粒子的适应度不同采用不同的惯性权重,从而有效的平衡算法的全局和局部搜索能力,增加种群的多样性并提高算法的搜索效率。仿真实验表明该算法与传统粒子群算法相比,所需迭代次数减少,生成组合测试数据速度快。 相似文献
13.
基于粒子群算法的配电网网架规划 总被引:8,自引:0,他引:8
针对配电网网架规划问题,提出了一种改进的混合粒子群算法,引入与以往的进化粒子群混合算法不同的动态邻域间极值粒子的交叉操作,提高了算法的收敛速度;提出一种“尽量满足辐射状约束”的方法,有效地解决了离散变量的处理和辐射网判断之间的矛盾。算例计算表明,该算法收敛速度快,具有很好的全局搜索能力,是可行且有效的,对于推广PSO在电力系统中的应用具有积极的意义。 相似文献
14.
基于高阶累积量(HOC)的自适应滤波器能够滤除高斯噪声或其它具有对称概率分布函数的噪声,其解法一般采用的是梯度搜索法,但是梯度搜索过程难以避免局部收敛而且计算复杂.粒子群优化算法(PSO)具有算法简洁,易于实现,且不需要梯度信息等优势.使用粒子群优化算法求解高阶累积量自适应滤波器系数优化问题,为滤波器参数的优化提供了一种新的思路.仿真结果表明,使用PSO优化算法求解自适应滤波器系数能获得更高的精度.同时PSO算法受系统跃变的影响较小,因此它在求解非平稳过程模型系统时具有一定的优势. 相似文献
15.
基于高阶累积量(HOC)的自适应滤波器能够滤除高斯噪声或其它具有对称概率分布函数的噪声,其解法一般采用的是梯度搜索法,但是梯度搜索过程难以避免局部收敛而且计算复杂.粒子群优化算法(PSO)具有算法简洁,易于实现,且不需要梯度信息等优势.使用粒子群优化算法求解高阶累积量自适应滤波器系数优化问题,为滤波器参数的优化提供了一种新的思路.仿真结果表明,使用PSO优化算法求解自适应滤波器系数能获得更高的精度.同时PSO算法受系统跃变的影响较小,因此它在求解非平稳过程模型系统时具有一定的优势. 相似文献
16.
基于反馈策略的自适应粒子群优化算法 总被引:12,自引:0,他引:12
为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探和开发能力.基于惯性权值随种群多样性变化而变化的动态分析,建立了惯性权值与平均粒距之间的线性函数关系,并将该函数关系融入到APSO算法中.测试结果表明,与常规粒子群优化算法相比,该算法在多峰函数寻优时,成功率和精确度都有显著提高,且全局收敛速度快;在求解异或(XOR)分类问题时成功概率提高,收敛速度加快,APSO算法对神经网络的训练更加有效. 相似文献
17.
种群分类粒子群改进算法研究 总被引:3,自引:1,他引:3
针对粒子群算法在陷入局部最优时难于跳出的缺陷,提出一种改进的粒子群算法.该算法首先利用粒子适应值的统计规律对粒子进行分类,对属于不同类别的粒子采用不同的进化模型,对于利用完全模型进化的粒子,采用动态调整学习因子的方法,从而大大提高了算法的优化效率和优化精度.通过反复实验分析,得出学习因子随着进化推进的最优变化规律,并给出了学习因子的最佳函数表达式.仿真结果表明,利用改进的PSO算法优化4种具有代表性的基准函数,无论是在优化精度方面还是在优化效率方面,均较以往提出的PSO算法在性能上有本质的提高. 相似文献
18.
提出了基于改进二进制粒子群算法的配电网重构策略,在保证系统及用户供电质量的前提下,使得配电网重构的综合费用最低。从配电网重构实际应用出发,提出了综合考虑系统的电能损耗费用、开关运行维护及投切费用和停电损失费用四方面的目标函数。针对普通粒子群算法易陷入局部极值的缺点,采用改进的惯性权值策略,增强了算法的调节功能,克服了普通粒子群算法的早熟收敛现象。算法还对开关操作次数约束进行了处理使之不影响全局最优性。仿真结果表明,这种配电网策略可以明显降低系统网损和综合费用。改进的粒子群算法计算速度快,目标函数更贴近配电网重构的实际情况。 相似文献
19.
标准粒子群算法主要用于优化连续性,而对粒子群算法求解非线性整数规划,算法的粒子位置必须解决取整问题。基此,文章提出一种粒子位置最终取整的方法,以改进粒子群算法解决整数规划的具体过程。基准函数的仿真结果表明,改进后的取整方法的搜索成功率优于直接取整和随机取整,综合搜索效率更佳。 相似文献