首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flaxseed supplementation improves fatty acid profile of cow milk   总被引:2,自引:0,他引:2  
The objective of the study was to determine the effects of adding flaxseed or fish oil to the diet on the milk fatty acid profile of cows. The experiment was conducted in the summer of 2006 and involved 24 Friesian cows that were divided into 3 groups of 8 animals according to different type of fat supplementation: a traditional diet with no fat supplementation, a diet supplemented with whole flaxseed, and a diet supplemented with fish oil. Results suggested that whole flaxseed supplementation positively affects the milk fatty acid profile during summer. In particular, milk from cows receiving flaxseed supplementation showed a decrease in saturated fatty acid, an increase in monounsaturated fatty acid, and, together with the milk from fish oil-supplemented cows, an increase in polyunsaturated fatty acid content compared with milk from control cows. As expected, both fish oil and flaxseed supplementation increased the content of n-3 polyunsaturated fatty acids in milk fat. The increased dietary intake of C18:3 in flaxseed-supplemented cows resulted in increased levels of milk C18:1 trans-11 and increased conjugated linoleic acid C18:2 cis-9,trans-11 by Δ9-desaturase activity. Milk from flaxseed-supplemented cows together with the high conjugated linoleic acid content was characterized by low atherogenic and thrombogenic indices, suggesting that its use has less detrimental effects concerning the atherosclerosis and coronary thrombosis risk associated with the consumption of milk and dairy products. In conclusion, flaxseed supplementation improves composition and nutritional properties of milk from cows milked during times of high ambient temperature.  相似文献   

2.
Four lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the effects of feeding micronized and extruded flaxseed on milk composition and blood profile in late lactation. Four diets were formulated: a control (C) diet with no flaxseed, a raw flaxseed (RF) diet, a micronized flaxseed (MF) diet, and an extruded flaxseed (EF) diet. Flaxseed diets contained 12.6% flax-seed (dry matter basis). Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection. Feeding flaxseed reduced milk yield and energy-corrected milk by 1.8 and 1.4 kg/d, respectively. Yields of milk protein and casein were also lower for cows fed flaxseed diets than for those fed the C diet. Milk yield (1.6 kg/d) and milk fat percentage (0.4 percentage unit) were lower for cows fed EF than those fed MF. Plasma cholesterol and nonesterified fatty acid concentrations were higher for cows fed flaxseed diets relative to those fed the C diet. Flaxseed supplementation decreased plasma concentrations of medium-chain (MCFA) and saturated (SFA) fatty acids and increased concentrations of long-chain (LCFA) and monounsaturated fatty acids. Feeding flaxseed reduced the concentrations of short-chain fatty acids (SCFA), MCFA, and SFA in milk fat. Consequently, concentrations of LCFA and unsaturated fatty acids were higher for cows fed flaxseed diets than for those fed the C diet. Flaxseed supplementation increased average concentrations of C(18:3) and conjugated linoleic acid by 152 and 68%, respectively. Micronization increased C(18:3) level, and extrusion reduced concentrations of SCFA and SFA in milk. It was concluded that feeding raw or heated flaxseed to dairy cows alters blood and milk fatty acid composition. Feeding extruded flaxseed relative to raw or micronized flaxseed had negative effects on milk yield and milk composition.  相似文献   

3.
Zinc represents an essential microelement for several biochemical mechanisms. The body's inability to store zinc necessarily requires a constant dietary supply to avoid alteration of physiological functions. The aim of the present study was to investigate the effect of dietary enrichment with zinc on chemical-nutritional and aromatic properties of milk and cheese. Thirty commercial dairy cows, balanced for parity, milk production, and days in milk, were randomly assigned to 2 groups. The control group was fed with a conventional complete diet (22 kg of dry matter/animal per day), whereas the experimental group received a daily zinc supplementation of 60 mg per kg of dry complete feed. During the experimental period, the milk yield was monitored and samples of milk and caciotta cheese were collected to obtain information about the chemical-nutritional composition and aromatic profile. Dietary zinc integration did not influence milk yield and composition, but induced a marked reduction of somatic cell count and improved the oxidative stability of ripened caciotta cheese. In both milk and cheese, the experimental group samples were characterized by a lower concentration of saturated fatty acids and an increase in oleic acid, vaccenic acid, and rumenic acid. The aromatic profile of dairy products was also positively affected by dietary zinc intake, with an increase in concentration of carboxylic acids, aldehydes, and esters. The present results suggest a positive role of zinc in improving animal health and nutraceutical properties of milk and corresponding cheese. Taking into account the analysis of volatile compounds, zinc dietary supplementation of dairy cows should contribute to the production of cheeses with interesting organoleptic properties, although more studies are necessary to confirm the consumer acceptability of these changes.  相似文献   

4.
This study aimed to evaluate the effect of dietary integration of dried olive pomace (DOP), a by-product of olive oil separation, on nutritional and aromatic properties of milk and cheese. Twenty dairy cows were divided into 2 groups that were balanced for milk yield, parity, and days in milk. The control group was fed a conventional diet (20 kg of dry matter/head per day), whereas the experimental group (EG) received the conventional diet supplemented with DOP as 10% of dry matter. During the trial, milk yield was recorded and the samples of milk, cheese, total mixed rations, and DOP were collected and analyzed to determine the chemical–nutritional composition and aromatic profile. Atherogenic and thrombogenic indices were calculated on the basis of the fatty acid (FA) profile of milk and cheese. Data were analyzed according to the mixed model for milk yield and chemical composition, including cows nested within treatment as a random effect, whereas the general linear model was used for the analysis of cheese parameters. Differences were assessed by Tukey's test. The EG diet had a lower content of palmitic, stearic, and linoleic acids and a higher level of oleic acid compared with the control. Dietary DOP integration did not affect milk yield and composition with the exception of protein content, which was greater in EG and significantly affected by diet and period. Instead, period was found to be significant for fat and casein in both groups. Dietary supplementation with DOP modified the FA profile of milk and cheese. There was a decrease in short- and medium-chain FA, but significance was achieved only for palmitic acid. The stearic, isomer trans of oleic (in particular vaccenic acid), oleic, and isomer trans of linoleic acids significantly increased. Monounsaturated FA increased in EG milk and cheese and saturated FA were significantly lower, whereas no difference was marked between the groups regarding level of polyunsaturated FA. Supplementation with DOP reduced atherogenic and thrombogenic indices and increased conjugated linoleic acid in both milk and cheese. The free fatty acids, ketones, lactones, esters, and phenylalanine catabolites were increased in raw milk, whereas only leucine metabolism was affected by diet in pasteurized milk cheese at both 1 and 30 d of ripening. The present results pointed out that DOP supplementation may improve the nutritional and nutraceutical properties and modify the aroma of milk and derived cheese.  相似文献   

5.
This study aimed to investigate the effect of dietary selenium supplementation of Friesian cows on chemical-nutritional and volatile fraction of caciocavallo cheese. A sample of 32 Friesian cows, balanced for parity, milk production, and days in milk, were randomly assigned to 2 groups. The control group (CG) was fed with a conventional feeding strategy, while the experimental group (SeG) received a daily selenomethionine supplementation of 0.45 mg/kg in total mixed ration. During the experimental period, milk yield was monitored, and samples of milk and caciocavallo cheese were collected and analyzed to obtain information on chemical-nutritional composition and volatile compounds profile. Dietary Se integration did not induce variations on milk yield or composition but significantly lowered the somatic cell count (SCC). In both milk and cheese, samples from SeG were characterized by a lower concentration of saturated fatty acids (SFA) and increases in linoleic and rumenic acids. The volatile compounds profile of dairy products was also positively affected by dietary Se intake, with an increase in concentration of free fatty acids, esters, and aldehydes. These results suggest that Se plays a positive role in improving bovine mammary gland functionality and the nutraceutical properties of milk and caciocavallo cheese made therefrom. Such findings could contribute to the production of cheeses with interesting organoleptic properties, although further sensorial evaluations should be performed to deeply investigate these changes and confirm consumer acceptability.  相似文献   

6.
The effects of dietary zinc supplementation on chemical composition, nutritional quality and volatile profile of Giuncata cheese were investigated. Dietary zinc addition did not influence milk yield and composition, but induced a marked reduction of somatic cell count. Both in milk and cheese the experimental samples were characterised by a lower concentration of saturated fatty acids and an increase in oleic, vaccenic and rumenic acids. The volatile profile of Giuncata cheese samples was also affected by dietary zinc intake, with an increase in concentration of butanoic acid, hexanoic acid and hexanal. The present results suggest a positive role of zinc in improving animal health and nutraceutical properties of milk and corresponding cheese. Such findings could contribute to the production of cheeses with interesting properties, although further evaluations should be performed to confirm the consumer acceptability of these changes.  相似文献   

7.
《Journal of dairy science》2021,104(9):9543-9555
The aim of the present study was to compare the effect of dietary tannins on cow cheese quality in 2 different grazing seasons in the Mediterranean. Two experiments were performed on 14 dairy cows reared in an extensive system. The first experiment took place in the wet season (WS), and the second experiment took place in the dry season (DS). In the WS and DS experiments, cows freely grazed green pasture or dry stubbles, respectively, and the diet was supplemented with pelleted concentrate and hay. In both experiments, the cows were divided into 2 balanced groups: a control group and a group (TAN) receiving 150 g of tannin extract/head per day. After 23 d of dietary treatment, individual milk was collected, processed into individual cheeses, and aged 25 d. Milk was analyzed for chemical composition, color parameters, and cheesemaking aptitude (laboratory cheese yield and milk coagulation properties). Cheese was analyzed for chemical composition, proteolysis, color parameters, rheological parameters, fatty acid profile, and odor-active volatile compounds. Data from the WS and DS experiments were statistically analyzed separately with an analysis of covariance model. In the WS experiment, dietary tannin supplementation had no effect on milk and cheese parameters except for a reduced concentration of 2-heptanone in cheese. In the DS experiment, TAN milk showed lower urea N, and TAN cheese had lower C18:1 trans-10 concentration and n-6:n-3 polyunsaturated fatty acid ratio compared with the control group. These differences are likely due to the effect of tannins on rumen N metabolism and fatty acid biohydrogenation. Dietary tannins may differently affect the quality of cheese from Mediterranean grazing cows according to the grazing season. Indeed, tannin bioactivity on rumen metabolism seems to be enhanced during the dry season, when diet is low in protein and rich in acid detergent fiber and lignin. The supplementation dose used in this study (1% of estimated dry matter intake) had no detrimental effects on cheese yield or cheesemaking parameters. Also, it is unlikely that sensorial characteristics would be affected by this kind of dietary tannin supplementation.  相似文献   

8.
Sixteen Holsteins cows were used in a Latin square design experiment to determine the effects of extruded flaxseed (EF) supplementation and grain source (i.e., corn vs. barley) on performance of dairy cows. Extruded flaxseed diets contained 10% [dry matter (DM) basis] of an EF product that consisted of 75% flaxseed and 25% ground alfalfa meal. Four lactating Holsteins cows fitted with rumen fistulas were used to determine the effects of dietary treatments on ruminal fermentation. Intakes of DM (23.2 vs. 22.2 kg/d), crude protein (4.2 vs. 4.0 kg/d), and neutral detergent fiber (8.3 vs. 7.9 kg/d) were greater for cows fed EF diets than for cows fed diets without EF. Milk yield and composition were not affected by dietary treatments. However, 4% fat-corrected milk (30.5% vs. 29.6 kg/d) and solids-corrected milk (30.7 vs. 29.9 kg/d) were increased by EF supplementation. Ruminal pH and total volatile fatty acid concentration were not influenced by EF supplementation. However, feeding barley relative to corn increased molar proportions of acetate and butyrate and decreased that of propionate. Ruminal NH3-N was lower for cows fed barley than for cows fed corn. Milk fatty acid composition was altered by both grain source and EF supplementation. Cows fed EF produced milk with higher polyunsaturated and lower saturated fatty acid concentrations than cows fed diets without EF. Feeding EF or corn increased the milk concentration of C18:0, whereas that of C16:0 was decreased by EF supplementation only. Extruded flaxseed supplementation increased milk fat α-linolenic acid content by 60% and conjugated linoleic acid content by 29%. Feeding corn relative to barley increased milk conjugated linoleic acid by 29% but had no effect on milk α-linolenic concentration. Differences in animal performance and milk fatty acid composition were mainly due to EF supplementation, whereas differences in ruminal fermentation were mostly due to grain source.  相似文献   

9.
10.
The experiment was carried out to investigate the effects of supplementation with microalgae (Schizochytrium sp.) on the nutritional characteristics of milk and Camembert cheese from dairy goats. The yield and composition of milk and cheese and the sensory quality of cheese were not affected by the supplementation. As the level of supplementation increased, the concentration of docosahexaenoic acid and total n-3 fatty acids increased, whereas the ratio of n-6/n-3 and total saturated fatty acids decreased in the milk and cheese. In conclusion, supplemented goats, especially goats that received 35 g/head/day produced milk and cheese with better fatty acid composition for human consumption, without affecting the production and composition.  相似文献   

11.
Eight multiparous Holstein cows averaging 570 ± 43 kg of body weight and 60 ± 20 d in milk were used in a double Latin square design with four 21-d experimental periods to determine the effects of feeding ground or whole flaxseed with or without monensin supplementation (0.02% on a dry matter basis) on milk production and composition, feed intake, digestion, blood composition, and fatty acid profile of milk. Intake of dry matter was similar among treatments. Cows fed whole flaxseed had higher digestibility of acid detergent fiber but lower digestibilities of crude protein and ether extract than those fed ground flaxseed; monensin had no effect on digestibility. Milk production tended to be greater for cows fed ground flaxseed (22.8 kg/d) compared with those fed whole flaxseed (21.4 kg/d). Processing of flaxseed had no effect on 4% fat-corrected milk yield and milk protein and lactose concentrations. Monensin supplementation had no effect on milk production but decreased 4% fat-corrected milk yield as a result of a decrease in milk fat concentration. Feeding ground compared with whole flaxseed decreased concentrations of 16:0, 17:0, and cis6-20:4 and increased those of cis6-18:2, cis9, trans11-18:2, and cis3-18:3 in milk fat. As a result, there was a decrease in concentrations of medium-chain and saturated fatty acids and a trend for higher concentrations of long-chain fatty acids in milk fat when feeding ground compared with whole flaxseed. Monensin supplementation increased concentrations of cis9 and trans11-18:2 and decreased concentrations of saturated fatty acids in milk fat. There was an interaction between flaxseed processing and monensin supplementation, with higher milk fat concentration of trans11-18:1 for cows fed ground flaxseed with monensin than for those fed the other diets. Flaxseed processing and monensin supplementation successfully modified the fatty acid composition of milk fat that might favor nutritional value for consumers.  相似文献   

12.
The effects of supplementing cows' diets with protein and energy on milk composition and the composition and yield of Cheddar cheese were investigated. This research addresses the problems of seasonal reduction in the capacity of cheese curds to expel moisture as observed in parts of south-eastern Australia. Milk was collected from cows offered a basal diet of silage and hay supplemented with different sources and levels of dietary protein and energy. The protein supplements were sunflower, canola, cottonseed meal and lupin, and the energy supplements were maize grain, oats, wheat and barely. This milk was used to manufacture Cheddar cheese on a pilot scale. Cheese moisture content was dependent on the source and level of dietary protein and energy. Milk from cows offered the lupin protein supplements and wheat energy supplements consistently produced cheese with a lower moisture content and moisture in fat-free matter. Milk from these supplemented diets had increased casein concentrations and higher proportions of alpha S2-casein than milk from the poor quality control diet. Cheese yield was directly related to the total casein concentration of milk, but was not influenced by differences in casein composition. Supplementing the cows' diets increased the inorganic P, Mg and Ca concentrations in milk. A low inorganic P concentration in milk from cows offered the control diet was caused by a low intake of dietary P. These findings showed that changes in the mineral and casein composition of milk, associated with diet, could influence the composition of Cheddar cheese.  相似文献   

13.
Nine multiparous Holstein cows were used in three 3 × 3 Latin squares to investigate the effects of feeding unheated and micronised flaxseed on milk yield and milk fatty acid composition. Three diets were formulated to meet the nutrient requirement of dairy cows in early lactation: a control diet with no added flaxseed (NFS), an unheated flaxseed diet (UFS) and a micronised flaxseed diet (MFS). The level of flaxseed in UFS and MFS was 70 g kg?1 of the diet dry matter (DM). Feeding flaxseed to dairy cows had no effect on DM intake or milk yield. However, energy‐corrected milk was higher (P < 0.05) for cows fed MFS than for those fed UFS or NFS. Supplemental flaxseed reduced (P < 0.05) the milk fat percentage without affecting the concentration of milk protein or milk lactose. However, the yield of milk components was not affected by feeding flaxseed. The concentrations of short‐chain (C4:0 to C12:0) and medium‐chain (C14:0 to C17:0) fatty acids were decreased (P < 0.05) while those of long‐chain fatty acids (C18:0 to C18:3) were increased (P < 0.05) in the milk of cows fed UFS and MFS compared with cows fed NSF. Feeding flaxseed to dairy cows can alter the milk fatty acid composition, but only minor effects on milk fatty acid composition can be expected by feeding micronised versus unheated flaxseed. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
The effects of supplementing a basal diet of silage and hay with increasing amounts of harvested spring pasture, or with lupin and wheat, on the composition of milk and the consequent effects on cheese composition and yield were investigated in an indoor feeding study. Milk was collected from five groups of eight cows in mid lactation offered different diets and manufactured into Cheddar cheese on a pilot scale. Milk from cows given the lupin-wheat (LW) and the high pasture level (HP) diets produced low moisture cheese. Cheese produced with milk from cows given the control diet was high in moisture content compared with that made with milk from cows offered the LW diet. Cheese yields from the milk of cows offered the HP and LW diets were greater than from the milk of cows on the control diet, and were associated with the higher casein concentrations of these milks. Casein number was higher in milk from diets supplemented with pasture but was not an indicator of the functional properties of milk that affected cheese moisture. The proportion of beta-casein in milk from cows offered the HP diet was higher and that of gamma-casein lower than in milk from cows given the LW supplement, although cheese moisture content was similar with both diets. Milk from cows offered the HP diet had a greater inorganic P concentration than that from cows given the LW diet, although the dietary intake of P was higher for the LW diet. The significance of the effect of dietary P intake on the concentration of inorganic P in milk and hence its suitability for cheesemaking was apparent when dietary P intake was low, as shown in milk produced by cows offered the control diet.  相似文献   

15.
This study evaluated the effect of dietary supplementation with extruded linseed on the fatty acid and triglyceride composition of creams obtained by natural creaming of cows’ milk and collected in the ‘Parmigiano‐Reggiano cheese’ protected designation of origin area. The inclusion of linseed in the diet of experimental dairy cows’, resulted in creams with increased unsaturated fat levels and healthy fatty acids such as omega‐3 and conjugated linoleic acid isomers, as well as higher levels of long‐chain triglycerides. The combination of infrared spectroscopy and chemometric methods was able to differentiate cream samples based upon differences in cows’ diets and supplemented extruded linseed.  相似文献   

16.
BACKGROUND: The objective of this study was to determine the effects of sources of supplemental fat on laying performance, egg quality, and fatty acid composition of egg yolk. RESULTS: Two hundreds Isa Brown layers were assigned randomly to be fed ad libitum a standard commercial layer feed (BD), basal diet plus 2% tallow (T), basal diet plus a mixture of 1% tallow and 1% flaxseed oil (MTFO), basal diet plus 2% sunflower oil (SO), or basal diet plus 2% flaxseed oil (FO), which were offered for 8 weeks. Each diet was given to five groups, each containing 10 hens. The feed efficiency and egg production were 2.78 and 53.51% for BD; 2.30 and 63.47% for T; 2.45 and 60.14% for MTFO; 2.29 and 64.30% for SO, and 2.62 and 61.18% for FO groups, respectively. Dietary fat supplementation affected the laying performance but had no significant effects on egg quality parameters. The fatty acid composition of egg yolk lipids were significantly affected by dietary fatty acid composition. The supplemental tallow increased palmitic fatty acid. The proportions of linoleic and arachidonic fatty acids in egg yolks for layers fed the SO diet were higher than in the BD group and those on diets containing other fats. Concentrations of oleic and omega‐3 fatty acids were the highest in layers fed the FO diet during the laying period. CONCLUSION: The results indicated that dietary animal and plant fats changed the fatty acid composition of egg yolk. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
Flaxseed hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on its value for dairy production. Monensin supplementation is known to modify biohydrogenation of FA by rumen microbes. Therefore, the main objective of the experiment was to determine the effect of feeding a combination of monensin and flaxseed hulls on ruminal fermentation characteristics and FA profile of ruminal fluid and milk. Four ruminally fistulated multiparous Holstein cows averaging 665 ± 21 kg body weight and 190 ± 5 d in milk were assigned to a 4×4 Latin square design (28-d experimental periods) with a 2×2 factorial arrangement of treatments. Treatments were: 1) control, neither flaxseed hulls nor monensin; 2) diet containing (dry matter basis) 19·8% flaxseed hulls; 3) diet with monensin (16 mg/kg dry matter); 4) diet containing 19·8% (dry matter basis) flaxseed hulls and 16 mg monensin/kg. Flaxseed hull supplementation decreased the acetate to propionate ratio in ruminal fluid and monensin had no effect. Concentrations of trans-18:1 isomers (trans9,trans11,trans13/14+6/8) and cis9,12,15-18:3 in ruminal fluid and milk fat were higher and those of cis9,12-18:2 in milk fat tended (P=0·07) to be higher for cows supplemented with flaxseed hulls than for cows fed no flaxseed hulls. Monensin had little effect on milk fatty acid profile. A combination of flaxseed hulls and monensin did not result in better milk fatty acid profile than when feeding only flaxseed hulls.  相似文献   

18.
Four lactating Holstein cows with ruminal and duo-denal cannulas were used in a 4 x 4 latin square design to determine the effects of feeding heat-treated flaxseed on ruminal fermentation and site and extent of nutrient utilization. Four diets were formulated: a control diet with no flaxseed, a raw flaxseed diet (RF), a micronized flaxseed diet (MF), and an extruded flaxseed diet (EF). Flaxseed diets contained 12.6% flaxseed (dry matter [DM] basis). Ruminal pH, NH3 N, and total concentration of volatile fatty acids were not affected by dietary treatments. However, feeding flaxseed decreased the molar proportion of acetate and increased that of propionate. Flaxseed supplementation had no effect on ruminal digestion of DM, organic matter (OM), neutral detergent fiber (NDF), crude protein (CP), fatty acids (FA), and gross energy. However, ruminal digestion of acid detergent fiber (ADF) was lower for cows fed the flaxseed diets than for cows fed the control diet. Feeding flaxseed tended to increase post-ruminal and total tract digestibilities of DM, OM, NDF, and gross energy. Feeding heat-treated flaxseed diets relative to RF had no effect on ruminal, post-ruminal, and total tract nutrient digestibilities. Cows fed EF had higher ruminal and lower post-ruminal digestibilities of DM, OM, ADF, CP, and FA than cows fed MF. However, total tract digestibilities were similar for the 2 heat treatments. It was concluded that flaxseed supplementation improved total tract nutrient utilization with no adverse effects on ruminal fermentation. Extrusion failed to protect flaxseed from ruminal digestion. However, micronization can be used to increase the ruminal undegraded protein value of flaxseed.  相似文献   

19.
Flaxseed hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids but there is little information on digestibility of its nutrients by dairy cows. Four rumen-cannulated multiparous Holstein cows averaging 665 ± 21 kg of body weight and 190 ± 5 d in milk at the beginning of the experiment were assigned to a 4 × 4 Latin square design with four 28-d experimental periods to determine the effects of feeding monensin and flaxseed hulls on total tract apparent digestibility of nutrients and fatty acids. The four treatments were: (1) diet CO: control with neither flaxseed hulls nor monensin added; (2) diet FH containing 19·8 g flaxseed hulls/100 g dry matter (DM); (3) diet MO with 16 mg monensin/kg DM; (4) diet HM containing 19·8 g flaxseed hulls/100 g DM and 16 mg monensin/kg DM. Diets provided similar amounts of protein and net energy of lactation. Digestibility of crude protein was higher for diets containing flaxseed hulls and for diets supplemented with monensin. Flaxseed hulls supplementation decreased digestibility of acid and neutral detergent fibre. Significantly higher digestibility of ether extract and individual fatty acids was observed for treatments with flaxseed hulls compared with treatments without flaxseed hulls. A combination of flaxseed hulls and monensin did not result in better fatty acid digestibility than when feeding only flaxseed hulls.  相似文献   

20.
A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of increasing flaxseed (Linum usitatissimum) supplementation of an herbage-based diet on nutrient digestibility, microbial N synthesis, and methane (CH(4)) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design, with 7d for diet adaptation and 3d for data and sample collection. Treatments were 0, 5, 10, and 15% ground flaxseed supplementation of an orchardgrass (Dactylis glomerata L.) diet [70 g of total dry matter (DM) fed daily]. Samples were collected from the fermentors 4 times daily at feeding (0730, 1030, 1400, and 1900 h) on d 8 to 10 of each of four 10-d periods and analyzed for pH, ammonia-N, and volatile fatty acids. Gas samples for CH(4) analysis were collected immediately before and 1 and 2h after the 0730 h feeding on d 8, 9, and 10 and at the 1400 h feeding on d 7, 8, and 9 of each period. Effluents were analyzed for DM, organic matter, crude protein, and neutral detergent fiber for determination of nutrient digestibilities, and for total purine concentration for estimation of microbial protein synthesis. Apparent DM, organic matter, and neutral detergent fiber digestibilities decreased linearly with increasing supplemental flaxseed, whereas true DM and organic matter digestibilities were not significantly affected by treatment, averaging 77.6 and 79.1%, respectively. Mean ruminal pH and concentration of total volatile fatty acids were not significantly affected by increasing the dietary concentration of flaxseed, averaging 6.68 and 55.9 mmol/L across treatments, respectively. However, molar proportions of acetate and propionate increased linearly, whereas those of butyrate and valerate decreased linearly with increasing flaxseed supplementation. Although CH(4) output decreased linearly as supplemental flaxseed increased from 0 to 15% of diet DM, ammonia-N concentration, apparent crude protein digestibility, and microbial N synthesis did not differ across treatments. Incremental ground flaxseed supplementation of an herbage-based diet resulted in a corresponding decrease in CH(4) output in a dual-flow continuous culture fermentor system. However, apparent nutrient digestibility also decreased with flaxseed supplementation, which, at the cow level, could result in decreased DM intake, milk production, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号