首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A high performance liquid chromatography method for the determination of N3-methyl-5'-deoxy-5-fluorouridine, a possible metabolic product of the anticancer pro-drug 5'-deoxy-5-fluorouridine, in human serum and urine is described. Sample treatment involved addition of internal standard (5-bromouracil) and protein precipitation with ammonium sulphate (serum samples) followed by liquid-liquid extraction with ethyl acetate-isopropanol (90:10, v/v). The average recovery at 0.5 mg ml-1 level was (80 +/- 4%). A linear response extending over two decades of concentration was observed. Detection limits of 50 and 100 ng ml-1 were obtained in serum and urine, respectively.  相似文献   

3.
4.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12-15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles.  相似文献   

5.
Thyroid hormones are critical to growth and development of the human fetus. Abnormal placental development, a major cause of intrauterine growth restriction (IUGR), is associated with a high perinatal mortality and morbidity. Thyroid status has been postulated to play a role in the pathogenesis of such morbidity. In the present study, we have investigated fetal thyroid function and placental expression of thyroid hormone receptor (TR) alpha and beta variants during normal human pregnancy and in pregnancy associated with IUGR. Measurement of free thyroid hormones and TSH concentrations revealed significant rises in free T4 and free T3 between the second and third trimesters of normal pregnancy. Serum concentrations of free T4 and free T3 were lower in fetuses affected by IUGR, although serum TSH levels were not significantly different. Immunocytochemistry demonstrated the presence of TR alpha1, alpha2, and beta1 proteins within the nuclei of trophoblast and stromal placental cells. Immunostaining for these TR variants increased with increasing gestation in normal placenta. Comparison of IUGR placental samples with normal samples revealed greater immunostaining for TR alpha1, alpha2, and beta1 variants in IUGR. Examination of pretranslational expression of TR alpha1, alpha2, beta1, and beta2 variants by semiquantitative RT-PCR revealed increasing expression of TR alpha1, alpha2, and beta2 messenger RNAs with increasing gestation in normal pregnancy, which "mirrored" post-translational expression. However, and in contrast, there were no significant differences in expression of TR messenger RNAs in normal and IUGR placenta. The present findings of reduction in serum free thyroid hormones and increased expression of TR alpha and beta proteins in association with IUGR highlight the potential importance of thyroid status in influencing long-term fetal outcome in this condition.  相似文献   

6.
Hepatocyte cultures have been used in pharmacotoxicological studies, and sulfotransferases (ST) are important drug-metabolizing enzymes in liver. The expression of sulfotransferases in hepatocyte cultures has not been examined systematically. In the present study, the mRNA levels of different sulfotransferases in male and female rat hepatocytes were examined by northern-blot analyses. Various culture conditions such as different matrices (collagen, matrigel, collagen sandwich, or co-culture with epithelial cells), medium (Way-mouth's MB 752/1 and Modified Chee's Medium) and glucocorticoid supplementation (dexamethasone, 0.1 microM) were compared. Phenol ST (ST1A1) mRNA levels decreased to about 50% of initial mRNA levels within 10 hr of culture. At 96 hr, ST1A1 mRNA levels were approximately 20% of initial values when cultured on collagen, matrigel or co-culture. The two media did not differ in ability to maintain ST1A1 mRNA levels in the absence of dexamethasone (DEX); however, DEX addition to either medium resulted in ST1A1 mRNA levels greater than 100% of the initial mRNA levels at 96 hr, with the greatest increase observed using the matrigel substratum and Chee's medium. In the absence of DEX, the mRNA levels of N-hydroxy-2-acetylaminoflurene sulfortransferase (ST1C1), estrogen sulfotransferase (ST1E2) and hydroxysteroid sulfotransferase (ST-20/21, ST-40/41, ST-60) fell to approximately 20% of their initial levels within 24 hr, and to less than 5% at 96 hr. The loss of expression of these sulfotransferases was observed with all culture conditions. Addition of DEX to the media resulted in ST-40/41 and ST-60 mRNA expression at 20 and 35% of their initial values, respectively, in cultures maintained on matrigel and Chee's medium at 96 hr. These data suggest that sulfotransferases lose their constitutive expression in hepatocyte culture, but retain their inducibility.  相似文献   

7.
It was previously demonstrated that treatment of primary cultured rat hepatocytes with lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, induced the mRNAs for several cytochromes P450 (P450s), including CYP2B1/2, CYP3A1/2, and CYP4A. In this study, we have compared the effects of lovastatin with those of three additional HMG-CoA reductase inhibitors (simvastatin, pravastatin, and the structurally dissimilar drug fluvastatin) on P450 expression in primary cultured rat hepatocytes, and we have also characterized the effects of in vivo treatment with fluvastatin on P450 expression in rat liver. Treatment of cultured hepatocytes with lovastatin, simvastatin, or fluvastatin increased CYP2B1/2, CYP3A1/2, and CYP4A mRNA and immunoreactive protein levels over the dose range (3 x 10(-6) to 3 x 10(-5) M) required to increase the amount of HMG-CoA reductase mRNA. The increases in CYP2B1/2 levels produced by 3 x 10(-5) M fluvastatin treatment were larger than those produced by lovastatin or simvastatin treatment or by treatment with 10(-4) M phenobarbital. In contrast, treatment of cultured hepatocytes with 3 x 10(-5) M lovastatin, simvastatin, or fluvastatin increased CYP3A1/2 and CYP4A mRNA and immunoreactive protein to lower levels than those produced by treatment with 10(-5) M dexamethasone or 10(-4) M ciprofibrate. Treatment of cultured hepatocytes with pravastatin had little or no effect on the amount of any of the P450s examined, although this drug induced HMG-CoA reductase mRNA as effectively as did fluvastatin. Incubation of hepatocytes with 10(-4) M fluvastatin increased CYP1A1 mRNA to 67% of the level induced by treatment with 10(-5) M beta-naphthoflavone. Doses of 50 or 100 mg/ kg/day fluvastatin administered for 3 days to rats increased the hepatic levels of CYP2B1/2 and CYP4A mRNA and immunoreactive protein, although to much lower levels than those produced by treatment with phenobarbital or ciprofibrate, respectively. Treatment of rats with fluvastatin had no effect on hepatic levels of CYP3A1/2 mRNA or immunoreactive protein. However, treatment with 50 mg/kg/day fluvastatin induced CYP1A1 mRNA and protein. The effects of fluvastatin treatment on P450 expression seen in primary cultured rat hepatocytes thus largely recapitulated the effects seen in vivo. The differences in effects among the HMG-CoA reductase inhibitors suggest that simple inhibition of HMG-CoA reductase cannot explain all of the effects of these drugs on P450 expression.  相似文献   

8.
FSH acts on Sertoli cells via interaction with a transmembrane receptor (FSHr). Control of expression of the receptor is surely a factor in the regulation of the action of FSH. The regulation of FSHr by FSH and testosterone was studied both in culture and in vivo. Sertoli cells from 18- to 20-day-old male rats were cultured in the presence of 25 ng/ml ovine (o) FSH. At 8 h after addition of FSH, expression of FSHr mRNA decreased significantly. Addition of FSH and actinomycin D to cells did not result in a further decrease in FSHr mRNA levels, suggesting that FSH does not alter turnover of FSHr mRNA. Treatment of cells with 40 ng/ml testosterone did not have any significant effect on the expression of FSHr mRNA. Hypophysectomy of 20-day-old male rats resulted in an increase in expression of FSHr mRNA as compared to that in sham-hypophysectomized animals. This increase was measured at 24 h posthypophysectomy and was maintained at 72 h after surgery. Injection of rats with 0.2 U oFSH at 48 h posthypophysectomy resulted in a reduction in FSHr mRNA when compared to the levels in hypophysectomized rats. Treatment with 2 mg testosterone propionate had no effect on FSHr mRNA levels. The findings confirm that FSH plays an important role in regulating mRNA expression of the FSHr in Sertoli cells in culture and show for the first time that FSHr mRNA is regulated in vivo by FSH in the immature rat testis.  相似文献   

9.
10.
Thyroid hormone is essential for normal development and maintaining metabolic homeostasis. In mediating the thyroid hormone action, the thyroid hormone receptor (TR) plays a key role. Almost one decade ago, the cloning of TR was achieved, revealing the existence of at least two genes, TR alpha and TR beta, which encode TR. From these genes several TR isoforms can be generated by alternative splicing. They are designated as TR alpha 1, TR alpha 2 (inactive form), TR beta 1 and TR beta 2. Since the discovery of these TR isoforms, many studies have attempted to demonstrate their relative contribution to mediate thyroid hormone in various tissues. The distinct tissue distribution and the ontogenic expression of the TR isoforms, and the fact that TR gene abnormalities associated with the syndrome of resistance to thyroid hormone (RTH) have been found only in the TR beta gene, indicate that products of TR alpha and TR beta have distinct roles. However, no direct evidence of the distinct roles of the TR isoforms has been shown. Gene knockouts of either TR isoform would provide important information to understanding their specific roles. In this review, the history of the TR isoform discovery and studies attempting to demonstrate the specific roles of TR isoforms are summarized, and recent reports dealing with knockouts of TR isoforms are comprehensively presented.  相似文献   

11.
Complementary medicine (CM) is popular with patients but physicians do not feel at ease with this situation and some fear that the patient might be the loser. Their fear is based on the perception that some CM practitioners have dubious qualifications and competence and that too little is known about the efficacy and safety of many complementary therapies. It follows that, in the interest of the patient and all other parties involved, we urgently need more and better research to fill the void. Integration of complementary medicine into mainstream care requires a minimum of essential evidence. As in all areas of medicine, there can be no short cut to rigorous research.  相似文献   

12.
Adrenocorticotropin hormone (ACTH) and adrenal steroids may influence trophic processes operative in neuronal plasticity. Because nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) participate in neuronal trophism, we have investigated whether adrenal steroids induce the expression of these two trophic factors in the rat brain. The systemic administration of dexamethasone (DEX) elicited a rapid (within 3 hr) and sustained accumulation of bFGF and NGF mRNA in the cerebral cortex and hippocampus. Regional studies showed that DEX increases bFGF but not NGF mRNA in the cerebellum, striatum, and hypothalamus. In situ hybridization studies revealed that DEX increases NGF mRNA in superficial layers of the cerebral cortex and in the dentate gyrus of the hippocampus, and bFGF mRNA throughout the brain, suggesting that DEX induces NGF mRNA in neurons and bFGF in glial cells. ACTH administered systemically elicited a temporal and regional induction in NGF and bFGF mRNA similar to that obtained with DEX. Increases in NGF and bFGF mRNAs were also observed after administration of corticosterone and, albeit to a lesser extent, aldosterone, suggesting that the pituitary-adrenocortical axis plays an important role in the regulation of NGF and bFGF expression in the brain. Our data suggest that NGF and bFGF represent a link by which the adrenal cortical system can exert trophic action on the CNS.  相似文献   

13.
Calcium has been demonstrated to play an important role in hepatocyte damage during ischemia/reperfusion phases. Calcium influx was determined in primary cultured rat hepatocytes submitted to a succession of warm hypoxia and reoxygenation phases in the presence of diltiazem, gallopamil and a Na+/H+ antiport inhibitor, HOE-694. Only diltiazem significantly inhibited calcium influx with higher potency after reoxygenation than after hypoxia only, suggesting a complex mechanism of action of diltiazem which could act on different physiological functions involved in Ca2+ invasion of hepatocytes after hypoxic insult.  相似文献   

14.
The nuclear corepressor (NCoR) binds to the thyroid hormone receptor (TR) in the absence of ligand. NCoR-TR interactions are mediated by two interaction domains in the C-terminal portion of NCoR. Binding of NCoR to TR results in ligand-independent repression on positive thyroid hormone response elements. The interactions between NCoR interaction domains and TR on DNA response elements, however, have not been well characterized. We have found that both interaction domains are capable of binding TR on thyroid hormone response elements. In addition, the NCoR interaction domains interact much more strongly with the TR than those present in the silencing mediator of retinoic acid and TRs (SMRT). Furthermore, deletion of either NCoR interaction domain does not significantly impair ligand-independent effects on positive or negative thyroid hormone response elements. Finally, both NCoR interaction domains appear to preferentially bind TR homodimer over TR-retinoid X receptor heterodimer in electrophoretic mobility shift assays. These data suggest that either NCoR interaction domain is capable of mediating the ligand-independent effects of TR on positive and negative thyroid hormone response elements.  相似文献   

15.
The brain has abundant nuclear T3-binding sites and contains messenger RNAs (mRNAs) encoding multiple thyroid hormone receptor (TR) isoforms; the cellular distribution of these different TR isoforms is unknown. To determine whether the TR isoforms are differentially expressed in neuronal and astroglial cells, we examined the relative abundance of the mRNAs encoding TR alpha 1, c-erbA alpha 2, and TR beta 1 in primary cultures of fetal rat brain and in several cell lines of neural and glial origin. Additionally, the TR isoform polypeptides were identified by immunocytochemistry using isoform-specific antibodies. Northern blot analysis showed that fetal brain cell cultures contain mRNAs encoding the T3-binding isoforms TR alpha 1 and TR beta 1 as well as the mRNA encoding the non-T3-binding c-erbA alpha 2. c-erbA alpha 2 mRNA was most abundant, comprising more than 85% of the TR mRNAs in the primary cultures. Neuronal enrichment by antimitotic selection increased TR beta 1 mRNA approximately 3-fold, decreased c-erbA alpha 2 mRNA 70%, and had little or no effect on TR alpha 1 mRNA. Neuronal depletion resulted in the complete loss of TR beta 1 mRNA without changing c-erb alpha 2 or TR alpha 1 mRNA levels. Primary cultures of rat astrocytes, the astrocytoma cell line C6, and the pheochromocytoma cell line PC12 contained only the c-erbA alpha 2 mRNA. Immunocytochemistry using isoform-specific anti-sera revealed that TR beta 1 was exclusively localized to neuronal nuclei, and c-erbA alpha 2 was only found in the nuclei of astrocytes. These results show that TR beta 1 is localized to the nuclei of neuronal cells, and that c-erbA alpha 2 is restricted to the nuclei of astrocytes.  相似文献   

16.
Thyroid hormone (TH) responsive genes can be both positively and negatively regulated by TH through receptors (TR) alpha and beta expressed in most body tissues. However, their relative roles in the regulation of specific gene expression remain unknown. The TR beta knockout mouse, which lacks both TR beta1 and TR beta2 isoforms, provides a model to examine the role of these receptors in mediating TH action. TR beta deficient (TR beta-/-) mice that show no compensatory increase in TR alpha, and wild-type (TR beta+/+) mice of the same strain were deprived of TH by feeding them a low iodine diet containing propylthiouracil, and were then treated with supraphysiological doses of L-T3 (0.5, 5.5, and 25 microg/day/mouse). TH deprivation alone increased the serum cholesterol concentration by 25% in TR beta+/+ mice and reduced it paradoxically by 23% in TR beta-/- mice. TH deprivation reduced the serum alkaline phosphatase (AP) concentration by 31% in TR beta+/+ mice but showed no change in the TR beta-/- mice. Treatment with L-T3 (0.5 to 25 microg/mouse/day) caused a 57% decrease in serum cholesterol and a 231% increase in serum AP in the TR beta+/+ mice. The TR beta-/- mice were resistant to the L-T3 induced changes in serum cholesterol and showed increase in AP only with the highest L-T3 dose. Basal heart rate (HR) in TR beta-/- mice was higher than that of TR beta+/+ mice by 11%. HR and energy expenditure (EE) in both TR beta+/+ and TR beta-/- mice showed similar decreases (49 and 46%) and increases (49 and 41%) in response to TH deprivation and L-T3 treatment, respectively. The effect of TH on the accumulation of messenger RNA (mRNA) of TH regulated liver genes was also examined. TH deprivation down regulated spot 14 (S14) mRNA and showed no change in malic enzyme (ME) mRNA in both TR beta+/+ and TR beta-/- mice. In contrast treatment with L-T3 produced an increase in S14 and ME but no change in TR beta-/- mice. From these results, it can be concluded that regulation of HR and EE are independent of TR beta. With the exception of serum cholesterol concentration and liver ME mRNA accumulation, all other markers of TH action examined during TH deprivation exhibited the expected responses in the absence of TR beta. Thus, as previously shown for serum TSH, TR beta is not absolutely necessary for some changes typical of hypothyroidism to occur. In contrast, except for HR and EE, the full manifestation of TH-mediated action required the presence of TR beta.  相似文献   

17.
18.
Chronic GABA exposure of mammalian primary cultured cortical neurons results in a downregulation of the GABA-benzodiazepine receptor complex. In the present study, the mRNA levels, as well as polypeptide expression, for the GABAA receptor alpha 2 and alpha 3 subunits in cultured embryonic mouse cerebral cortical neurons (7 day old) were examined using northern analysis and immunoblotting techniques following chronic GABA treatment. The alpha 1 subunit mRNA or polypeptide could not be detected in these neurons. The steady state levels of mRNA for the GABAA receptor alpha 2 and alpha 3 subunits showed a decrease in comparison with untreated neurons. There was no change in the level of the beta actin or poly(A)+ RNA under the same experimental conditions. This agonist-induced reduction in the GABAA receptor alpha 2 and alpha 3 subunit mRNA was blocked by the concomitant exposure of neurons to R 5135, an antagonist of GABAA receptor. The polypeptide expression for the GABAA receptor alpha 2 and alpha 3 subunits in chronically GABA-treated neurons also showed a decline and this change was also blocked by the concomitant exposure of cells to GABA and R 5135. These results indicate that the chronic exposure of the GABAA receptor complex to agonist downregulates the expression of the alpha subunits of the receptor complex, which may be related to an observed decreases in the number of binding sites and GABA-induced 36Cl-influx in the cortical neurons.  相似文献   

19.
20.
Analysis of the thyroid hormone receptor beta (TRbeta) gene of a Thai female with the syndrome of resistance to thyroid hormone (RTH) revealed a missense mutation at codon 317, changing the guanine in nucleotide 1234 to an adenine that results in the replacement of the normal alanine (GCT) with a threonine (ACT). The proposita was heterozygous, and this mutation was not present in her parents and her sister, compatible with a neomutation. This is the first report of TRbeta gene mutation causing RTH in an individual of Thai origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号