首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrin interactions with extracellular matrix proteins are mediated by brief oligopeptide recognition sequences, and synthetic peptides containing such sequences can inhibit integrin binding to the matrix. The RGD peptide motif is recognized by many integrins including alphav beta6, a specific receptor for fibronectin thought to support epithelial cell proliferation during wound healing and carcinoma progression. We report here the discovery of an unexpected non-RGD recognition motif for integrin alphav beta6. We compared the recognition profiles of recombinant alphav beta6 and alphav beta3 integrins by using phage display screening employing 7-mer and 12-mer peptide libraries. As predicted, phages binding strongly to alphav beta3 contained ubiquitous RGD sequences. However, on alphav beta6, in addition to RGD- containing phages, one-quarter of the population from the 12-mer library contained the distinctive consensus motif DLXXL. A synthetic DLXXL peptide, RTDLDSLRTYTL, selected from the phage sequences (clone-1) was a selective inhibitor of RGD-dependent ligand binding to alphav beta6 in isolated receptor assays (IC50 = 20 nM), and in cell adhesion assays (IC50 = 50 microM). DLXXL peptides were highly specific inhibitors of alphav beta6-fibronectin interaction as synthetic scrambled or reversed DLXXL peptides were inactive. NH2- and COOH-terminal modifications of the flanking amino acids suggested that the preceding two and a single trailing amino acid were also involved in interaction with alphav beta6. The DLXXL sequence is present in several matrix components and in the beta chain of many integrins. Although there is as yet no precise biological role known for DLXXL, it is clearly a specific inhibitory sequence for integrin alphav beta6 which has been unrecognized previously.  相似文献   

2.
3.
Peptides with high affinities and specificities for numerous proteins and nucleic acids have been previously identified from random peptide bacteriophage display libraries. Here, random peptide bacteriophage display libraries were used to identify sequences that bound the cancer-associated Thomsen-Friedenreich glycoantigen (T antigen). The T antigen, present on most malignant cells, contains an immunodominant Gal beta1 --> 3GalNAc alpha disaccharide unmasked on the surfaces of most carcinomas. This antigen has been postulated to be involved in tumor cell aggregation and metastasis. Two 15 amino acid random peptide bacteriophage display libraries were affinity selected with glycoproteins displaying T antigen on their surfaces. Sequence analysis revealed that many of the peptides shared homology with sugar recognition sites in several carbohydrate-binding proteins. A comparison of affinity selected sequences from both libraries yielded a common motif (W-Y-A-W/F-S-P) rich in aromatic amino acids. Four peptides, corresponding to the affinity selected sequences, were chemically synthesized and characterized for their carbohydrate recognition properties. The synthetic peptides exhibited high specificities and affinities to T antigen displayed on asialofetuin or conjugated to bovine serum albumin (Kd = 5 nM for MAP-P30 binding to asialofetuin) as well as free T-antigen disaccharide in solution (Kd = 10 microM for MAP-P30, 20 microM for P10). Two peptides, P30 and P10, demonstrated high affinities and specificities for both asialofetuin and T antigen in solution. Iodination of a lone tyrosine residue in each sequence dramatically reduced their abilities to bind T antigen, suggesting that the tyrosine residue plays an important role in carbohydrate recognition. That these peptides are of functional significance is evidenced by the ability of both P30 and P10 to inhibit asialofetuin-mediated melanoma cell aggregation in vitro and to compete with peanut lectin for binding to T antigen displayed on the surface of MDA-MB-435 breast carcinoma cells in situ.  相似文献   

4.
We have isolated selective ligands to the cell surface receptors of fibronectin (alpha 5 beta 1 integrin), vitronectin (alpha v beta 3 and alpha v beta 5 integrins) and fibrinogen (alpha IIb beta 3 integrin) from phage libraries expressing cyclic peptides. A mixture of libraries was used that express a series of peptides flanked by a cysteine residue on each side (CX5C, CX6C, CX7C) or only on one side (CX9) of the insert. A majority of the integrin-binding sequences derived from the CX9 library contained another cysteine, indicating preferential selection of conformationally constrained cyclic peptides. Each of the four integrins studied primarily selected RGD-containing phage sequences but favored different ring sizes and different flanking residues around the RGD motif. A cyclic peptide ACRGDGWCG was synthesized based on a phage sequence that bound particularly avidly to the alpha 5 beta 1 integrin. This peptide inhibited cell attachment to fibronectin at about 5-fold lower concentrations than the most potent cyclic peptides described earlier. The most interesting structure appeared to contain two disulphide bonds. One such peptide, ACDCRGDCFCG, was synthetized and shown to be at least 20-fold more potent inhibitor of alpha v beta 5- and alpha v beta 3-mediated cell attachment to vitronectin than similar peptides with a single disulphide bond and 200-fold more potent than commonly used linear RGD peptides. These results emphasize the importance of conformational restriction as a means of improving the potency of integrin-binding peptides and point to a new way of designing effective peptides by resticting the peptide conformation with more than one cyclizing bond.  相似文献   

5.
Gelsolin is a protein that severs and caps actin filaments. The two activities are located in the N-terminal half of the gelsolin molecules. Severing and subsequent capping requires the binding of domains 2 and 3 (S2-3) to the side of the filaments to position the N-terminal domain 1 (S1) at the barbed end of actin (actin subdomains 1 and 3). The results provide a structural basis for the gelsolin capping mechanism. The effects of a synthetic peptide derived from the sequence of a binding site located in gelsolin S2 on actin properties have been studied. CD and IR spectra indicate that this peptide presented a secondary structure in solution which would be similar to that expected for the native full length gelsolin molecule. The binding of the synthetic peptide induces conformational changes in actin subdomain 1 and actin oligomerization. An increase in the polymerization rate was observed, which could be attributed to a nucleation kinetics effect. The combined effects of two gelsolin fragments, the synthetic peptide derived from an S2 sequence and the purified segment 1 (S1), were also investigated as a molecule model. The two fragments induced nucleation enhancement and inhibited actin depolymerization, two characteristic properties of capping. In conclusion, for the first time it is reported that the binding of a small synthetic fragment is sufficient to promote efficient capping by S1 at the barbed end of actin filaments.  相似文献   

6.
Acetyl-N-SerAspLysPro (AcSDKP), known as a negative regulator of haematopoiesis, has been principally reported as an inhibitor of haematopoietic pluripotent stem cell proliferation. The tetrapeptide sequence is identical to the N-terminus of thymosin beta 4 (T beta 4), from which it has been suggested that it may be derived. Recently, evidence was shown that T beta 4 plays a role as a negative regulator of actin polymerization leading to the sequestration of its monomeric form. The structural similarity between the N-terminus of T beta 4 and AcSDKP has raised the possibility that AcSDKP may also participate in intracellular events leading to actin sequestration. The effect of T beta 4 on the proliferation of haematopoietic cells was compared to that of AcSDKP. The results revealed that T beta 4, like AcSDKP, exerts an inhibitory effect on the entry of murine primitive bone marrow cells into cell cycle in vitro. Qualitative electrophoretic analysis and quantitative polymerization assays were used to investigate the role of AcSDKP in actin polymerization. AcSDKP does not affect actin assembly at concentrations up to 50 microM, and does not compete with T beta 4 for binding to G-actin. These results suggest that AcSDKP is not involved in cell cycle regulation via an effect on the process of actin polymerization.  相似文献   

7.
Analysis of peptides derived from HLA class I molecules indicates that thousands of unique peptides are bound by a single molecular type, and sequence examination of the pooled constituents yields a motif which collectively defines the peptides bound by a given class I molecule. Motifs resulting from pooled sequencing are then used to infer whether particular viral and tumor protein fragments might serve as class I-presented peptide therapeutics. Still undetermined from a pooled motif is the breadth or range of peptides in the population which are brought together to form the pooled motif, and it is therefore not yet known how representative of the population a pooled motif is. By employing hollow fiber bioreactors for large-scale production of HLA class I molecules, sufficient peptides are produced to investigate individual subsets of peptides comprising a motif. Edman sequencing and mass spectrometric analysis of peptides eluted from HLA-B*1501 reveal that many peptide sequences fail to align with either the N- or C-terminal anchors predicted for the B*1501 peptide motif through whole pool sequencing. These analyses further reveal auxiliary anchors not previously detected and peptides significantly larger and smaller than the predicted nonamer, ranging from 6 to 12 amino acids in length. These results demonstrate that constituents of the B*1501 peptide pool vary markedly in comparison with one another and therefore in comparison with previously established B*1501 motifs, and such complexity indicates that many of the peptide ligands presented to CTL cannot be predicted using class I consensus motifs as search criteria.  相似文献   

8.
The beta-thymosins are a family of small proteins originally isolated from the thymus. Recently, two of the major mammalian isoforms, thymosin beta 4 (T beta 4) and thymosin beta 10 (T beta 10), are identified as significant actin monomer sequestering proteins which may be involved in regulating actin filament assembly. To study the cellular function of beta-thymosins, we have used isoform-specific antibodies to determine their concentration and intracellular distribution, and examined the effects of inducing overexpression of T beta 4 and T beta 10 on actin filament structures. Immunofluorescence labeling of peritoneal macrophages showed that both beta-thymosins are uniformly distributed within the cytoplasm. cDNA-mediated overexpression of beta-thymosins in CV1 fibroblasts induced extensive loss of phalloidin-stained actin stress fibers. Stress fibers in the cell center were more susceptible than those at the periphery. There was a decrease in the number of focal adhesions, as evidenced by a decrease in discrete vinculin staining and an increase in diffuse vinculin fluorescence. The majority of the transfected cells had normal shape in spite of extensive loss of actin filaments. Occasionally, cells overexpressing beta-thymosin were observed to divide. In these cells, beta-thymosin was excluded from the midbody which contains an actin filament-rich contractile ring. Our results indicate that T beta 4 and T beta 10 are functionally very similar and both are effective regulators of a large subset of actin filaments in living cells.  相似文献   

9.
This study describes the characterization of endogenous peptides associated with the two major subtypes of HLA-B44. The two subtypes differ for a single amino acid substitution from Asp (HLA-B*4402) to Leu (HLA-B*4403) in position 156 of the alpha 2 domain, causing strong alloreactivity in vivo. In order to study the involvement of peptides in this phenomenon, the peptide motifs of the two subtypes were determined from natural peptide pools using Edman degradation. The motif was found to be essentially identical for HLA-B*4402 and -B*4403, with a strong predominance for Glu at position 2, Tyr or Phe at positions 9 and 10 and hydrophobic residues, especially Met, at position 3. Two individual naturally processed ligands of HLA-B*4403 were sequenced and shown to be derived from intracellularly expressed proteins found in protein sequence databases. The sequence of these natural peptide ligands conform well to the determined motif. These data will allow the prediction of HLA-B44 restricted peptide epitopes from viral and tumor antigens of known amino acid sequences. Moreover, they indicate that the peptide repertoire presented by HLA-B*4402 and -B*4403 is very similar, suggesting that the strong alloresponse between these two subtypes is not due to presentation of a different set of self peptides.  相似文献   

10.
Nup475 is a nuclear zinc-binding protein of unknown function that is induced in mammalian cells by growth factor mitogens. Nup475 contains two tandemly repeated sequences YKTELCX8CX5CX3H (Cys3His repeats) that are thought to be zinc-bindin domains. Similar sequences have been found in a number of proteins from various species of eukaryotes. To determine the metal binding properties and secondary structure of the putative zinc-binding domains of Nup475, we have used synthetic or recombinant peptides that contain one or two domain sequences. The peptide with a single domain bound 1.0 +/- 0.1 equivalents of Co2+, and the peptide with two domains bound 1.7 +/- 0.4 equivalents of Co2+. Both peptides bound Co2+ and Zn2+ with affinities similar to those of classical zinc finger peptides. In each case, the Co2+ complex exhibited strong d-d transitions characteristic of tetrahedral coordination. For structural studies by nuclear magnetic resonance spectroscopy, we used a more soluble two-domain peptide that had a single amino acid substitution in a nonconserved amino acid residue in the second Cys3His repeat. The mutant peptide unexpectedly showed loss of one of its metal binding sites and displayed ordered structure for only the first Cys3His sequence. On the basis of the nuclear magnetic resonance data, we propose a structure for the Nup475 metal-binding domain in which the zinc ion is coordinated by the conserved cysteines and histidine, and the conserved YKTEL motif forms a parallel sheet-like structure with the C terminus of this domain. This structure is unlike that of any previously described class of metal binding domain.  相似文献   

11.
Detailed structural studies of amyloid fibrils can elucidate the way in which their constituent polypeptides are folded and self-assemble, and exert their neurotoxic effects in Alzheimer's disease (AD). We have previously reported that when aqueous solutions of the N-terminal hydrophilic peptides of AD beta-amyloid (A beta) are gradually dried in a 2-Tesla magnetic field, they form highly oriented fibrils that are well suited to x-ray fiber diffraction. The longer, more physiologically relevant sequences such as A beta(1-40) have not been amenable to such analysis, owing to their strong propensity to polymerize and aggregate before orientation is achieved. In seeking an efficient and inexpensive method for rapid screening of conditions that could lead to improved orientation of fibrils assembled from the longer peptides, we report here that the birefringence of a small drop of peptide solution can supply information related to the cooperative packing of amyloid fibers and their capacity for magnetic orientation. The samples were examined by electron microscopy (negative and positive staining) and x-ray diffraction. Negative staining showed a mixture of straight and twisted fibers. The average width of both types was approximately 70 A, and the helical pitch of the latter was approximately 460 A. Cross sections of plastic-embedded samples showed a approximately 60-A-wide tubular structure. X-ray diffraction from these samples indicated a cross-beta fiber pattern, characterized by a strong meridional reflection at 4.74 A and a broad equatorial reflection at 8.9 A. Modeling studies suggested that tilted arrays of beta-strands constitute tubular, 30-A-diameter protofilaments, and that three to five of these protofilaments constitute the A beta fiber. This type of structure--a multimeric array of protofilaments organized as a tubular fibril--resembles that formed by the shorter A beta fragments (e.g., A beta(6-25), A beta(11-25), A beta(1-28)), suggesting a common structural motif in AD amyloid fibril organization.  相似文献   

12.
A motif specific to peptides that bind to the human class I major histocompatibility complex molecule HLA-A3 was identified by sequence analysis of HPLC fractions containing endogenous peptides. Twenty-six different sequences were obtained, 19 of which were nonamers. The majority of these endogenous peptide sequences contained Leu at position (P)2, while most sequences contained Tyr or Lys at P9. In addition, Phe was shared by 16 sequences at P3. Synthetic peptides corresponding to endogenous peptide sequences were shown to bind to HLA-A3. The importance of Leu at P2 and Tyr or Lys at P9 ("anchor" residues) for peptide binding to HLA-A3 was demonstrated by the following results: (i) peptides GLFGGGGGY, GLFGGGGGK, and GLGGGGFGY, but not GLFGGGGGV, specifically bound to HLA-A3 and (ii) six nonapeptides from within the influenza A nucleoprotein, matrix, and polymerase proteins, selected for synthesis based upon their possession of P2 and P9 anchor residues, were shown to bind HLA-A3. In contrast, none of a set of eight peptides that bound to HLA-A2, or six that bound to HLA-B27, bound detectably to HLA-A3. These findings provide a rationale for the design and selection of peptides that can be recognized by HLA-A3-restricted T cells.  相似文献   

13.
Porcine spleen DNase II, a lysosomal acid hydrolase, is a noncovalently linked alpha.beta heterodimer (Liao, T.-H. (1985) J. Biol. Chem. 260, 10708-10713). The alpha subunit, after disulfide cleavage, yields two chains, alpha1 and alpha2. The complete amino acid sequences of the alpha1, beta, and alpha2 chains were elucidated by protein sequencing, and the pairings of one interchain disulfide between alpha1 and alpha2 and of three intrachain disulfides in alpha2 were assigned. Six carbohydrate attachment sites, two in beta and four in alpha2, were detected by sugar analyses. The cDNA of DNase II was amplified using primers synthesized on the basis of the amino acid sequences determined. The amplified fragments shown to be a cDNA sequence of 1,292 bases. This cDNA sequence has an open reading frame encoding a 364-amino acid polypeptide containing a putative transmembrane peptide at the NH2-end, two small connecting peptides in the middle, and a peptide at the COOH terminus. These are evidently removed to form mature DNase II. Thus, all three chains in the sequence alpha1, beta, and alpha2 are coded by the same cDNA. When Chinese hamster ovary cells were transfected with a cloned plasmid with an inserted cDNA fragment encoding the entire reading frame, the expressed protein was released into the growth medium as an active form of DNase II.  相似文献   

14.
The Eps homology (EH) domain is a recently described protein binding module that is found, in multiple or single copies, in several proteins in species as diverse as human and yeast. In this work, we have investigated the molecular details of recognition specificity mediated by this domain family by characterizing the peptide-binding preference of 11 different EH domains from mammal and yeast proteins. Ten of the eleven EH domains could bind at least some peptides containing an Asn-Pro-Phe (NPF) motif. By contrast, the first EH domain of End3p preferentially binds peptides containing an His-Thr/Ser-Phe (HT/SF) motif. Domains that have a low affinity for the majority of NPF peptides reveal some affinity for a third class of peptides that contains two consecutive amino acids with aromatic side chains (FW or WW). This is the case for the third EH domain of Eps15 and for the two N-terminal domains of YBL47c. The consensus sequences derived from the peptides selected from phage-displayed peptide libraries allows for grouping of EH domains into families that are characterized by different NPF-context preference. Finally, comparison of the primary sequence of EH domains with similar or divergent specificity identifies a residue at position +3 following a conserved tryptophan, whose chemical characteristics modulate binding preference.  相似文献   

15.
Bioactive peptides of different sources and biological functionalities, like endothelins, sarafotoxins, bee and scorpion venom toxins, contain a consensus cystine framework, Cys-(X)1-Cys/Cys-(X)3-Cys, which has been found to induce and stabilize a homologous folding motif named the cystine-stabilized alpha-helix (CSH). This is composed of an alpha-helical segment spanning the Cys-(X)3-Cys sequence portion that is crosslinked by two disulfide bridges to the sequence portion Cys-(X)1-Cys, itself folded in an extended beta-strand type structure. Search for sequence homologies of peptides and proteins in the SWISS-PROT and PDB data banks provided additional multiple examples of this type of cystine framework in serine proteinase inhibitors, in insect and plant defense proteins, as well as in members of the growth factor family with the cystine-knot. A comparative analysis of the known 3D-structures of these peptides and proteins confirmed that the presence of this peculiar cystine framework leads in all cases to a high degree of local structural homology that consists of the CSH motif, except for the cystine-knot, of the superfamily of the growth factors. In this case the cyclic structure formed by the parallel cysteine connectivities of Cys-(X)1-Cys/Cys-(X)3-Cys framework is penetrated by a third disulfide bond with formation of a concatenated knot, and the two disulfide-bridged peptide chains Cys-(X)1-Cys and Cys-(X)3-Cys are located in beta-strands. Conversely, peptides and proteins containing Cys-(X)m-Cys/Cys-(X)n-Cys cystine frameworks that differ from m/n = 1/3 were found to fold only sporadically into local alpha-helical structures.  相似文献   

16.
The biological activity of the Alzheimer's disease amyloid beta protein may be related to modulation of membrane lipid peroxidation. The effect of amyloid beta protein fragment 25-35 [A beta(25-35)] on lipid peroxidation was examined in liposomes enriched with polyunsaturated fatty acids. The activity of A beta(25-35) was compared to that of A beta(25-35) with either a scrambled sequence [A beta(25-35)scram] or a peptide sequence in which methionine was replaced with leucine [A beta(25-35) met]. A beta(25-35) inhibited lipid peroxidation in a dose- and time-dependent manner. The antioxidant activity of A beta(25-35) was observed at concentrations as low as 10 nM. The relative antioxidant activities of the amyloid beta protein fragments were as follows: A beta(25-35) > A beta(25-35) met > A beta(25-35)scram. The two more potent peptides intercalated into the membrane hydrocarbon core, as determined by small-angle x-ray diffraction approaches. These findings indicate that the amphiphilic A beta(25-35) peptide inhibits lipid peroxidation at low concentrations as a result of physicochemical interactions with the membrane lipid bilayer.  相似文献   

17.
S100 beta is a calcium-binding protein, which regulates the activities of several enzymes and inhibits the phosphorylation of a variety of protein kinase C substrates in a calcium-dependent manner. The protein was recently found to activate a retinal membrane guanylate cyclase, and in this paper, we report that it inhibits the phosphorylation of an 80 kDa retinal protein (p80). Structurally, S100 beta consists of two EF-hands connected by a hinge region. In view of its small size, wide distribution in a variety of tissues, and regulation of many different proteins, it is of interest to identify the sites on the protein that interact with the effectors, and to determine if the same sites are responsible for interaction with different effectors. We addressed these questions with the use of synthetic peptides with sequences corresponding to different regions of S100 beta and testing their effects on the protein's activation of guanylate cyclase, and inhibition of p80 phosphorylation. Peptides with sequences corresponding to effector interaction sites were anticipated to either block or simulate the effects of S100 beta. The results show that two regions of S100 beta interact with effectors: the C-terminal region of Thr81-Glu91 and the hinge region of Leu32-Leu40. The synthetic peptide containing the latter sequence blocked the S100 beta activation of guanylate cyclase and inhibition of p80 phosphorylation, while the peptide containing the former sequence blocked cyclase activation and simulated S100 beta in inhibiting p80 phosphorylation. By determining the effects of including or excluding dithiothreitol in the assays, we observed that the cysteine residue in the C-terminal region of S100 beta (Cys84) participates in the regulation of guanylate cyclase but not of p80 phosphorylation. We conclude from these results that the C-terminal and hinge regions of S100 beta are important in the regulation of effector proteins and that Cys84 is essential for interaction with only specific effectors.  相似文献   

18.
Peptides have the potential for targeting vaccines against pre-specified epitopes on folded proteins. When polyclonal antibodies against native proteins are used to screen peptide libraries, most of the peptides isolated align to linear epitopes on the proteins. The mechanism of cross-reactivity is unclear; both structural mimicry by the peptide and induced fit of the epitope may occur. The most effective peptide mimics of protein epitopes are likely to be those that best mimic both the chemistry and the structure of epitopes. Our goal in this work has been to establish a strategy for characterizing epitopes on a folded protein that are candidates for structural mimicry by peptides. We investigated the chemical and structural bases of peptide-protein cross-reactivity using phage-displayed peptide libraries in combination with computational structural analysis. Polyclonal antibodies against the well-characterized antigens, hen eggwhite lysozyme and worm myohemerythrin, were used to screen a panel of phage-displayed peptide libraries. Most of the selected peptide sequences aligned to linear epitopes on the corresponding protein; the critical binding sequence of each epitope was revealed from these alignments. The structures of the critical sequences as they occur in other non-homologous proteins were analyzed using the Sequery and Superpositional Structural Assignment computer programs. These allowed us to evaluate the extent of conformational preference inherent in each sequence independent of its protein context, and thus to predict the peptides most likely to have structural preferences that match their protein epitopes. Evidence for sequences having a clear structural bias emerged for several epitopes, and synthetic peptides representing three of these epitopes bound antibody with sub-micromolar affinities. The strong preference for a type II beta-turn predicted for one peptide was confirmed by NMR and circular dichroism analyses. Our strategy for identifying conformationally biased epitope sequences provides a new approach to the design of epitope-targeted, peptide-based vaccines.  相似文献   

19.
The development of neuro-degenerative diseases often involves amyloidosis, that is the formation of polymeric fibrillar structures from normal cellular proteins or peptides. For example, in Alzheimer's disease, a 42 amino acid peptide processed from the amyloid precursor protein forms filaments with a beta-sheet structure. Because of this, the structure and dynamics of polymeric peptide filaments is of considerable interest. We showed previously that a 23 amino acid peptide constituting a single leucine-rich repeat (LRRN) polymerises spontaneously in solution to form long filaments of a beta-sheet structure, a property similar to that of Alzheimer's beta-amyloid and prion peptides. Here we report that a variant of LRRN in which a highly conserved asparagine residue is replaced by aspartic acid does not form either filaments or beta structure. By contrast, a variant which replaces this asparagine residue with glutamine forms filaments ultrastructurally indistinguishable from those of LRRN. Electron micrographs of LRRN filaments show that many consist of two interleaved strands which appear to have a ribbon-like morphology. X-ray diffraction patterns from oriented LRRN fibres reveal that they are composed of long beta-sheet arrays, with the interstrand hydrogen bonding parallel to the filament axis. This 'cross-beta' structure is similar to that adopted by beta-amyloid and prion derived fibres. Taken together, these results indicate that the LRR filaments are stabilised by inter- or intra-strand hydrogen bonded interactions comparable to the asparagine ladders of beta-helix proteins or the 'glutamine zippers' of poly-glutamine peptides. We propose that similar stabilising interactions may underlie a number of characterised predispositions to neuro-degenerative diseases that are caused by mutations to amide residues. Our finding that amyloid-like filaments can form from a peptide motif not at present correlated with degenerative disease suggests that a propensity for beta-filament formation is a common feature of protein sub-domains.  相似文献   

20.
Recent advances, principally through the study of peptide models, have led to an enhanced understanding of the structure and function of the collagen triple helix. In particular, the first crystal structure has clearly shown the highly ordered hydration network critical for stabilizing both the molecular conformation and the interactions between triple helices. The sequence dependent nature of the conformational features is also under active investigation by NMR and other techniques. The triple-helix motif has now been identified in proteins other than collagens, and it has been established as being important in many specific biological interactions as well as being a structural element. The nature of recognition and the degree of specificity for interactions involving triple helices may differ from globular proteins. Triple-helix binding domains consist of linear sequences along the helix, making them amenable to characterization by simple model peptides. The application of structural techniques to such model peptides can serve to clarify the interactions involved in triple-helix recognition and binding and can help explain the varying impact of different structural alterations found in mutant collagens in diseased states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号