首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
集成电路用Cu-Ni-Si-Cr合金流变应力行为研究   总被引:1,自引:0,他引:1  
在Gleeble-1500D热模拟试验机上对Cu-Ni-Si-Cr合金在应变速率为10-2、10-1、1、5 s-1、变形温度为600~800℃条件下进行流变应力行为研究.结果表明,应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也越容易发生动态再结晶;并利用Arrhenius双曲正弦函数求得Cu-Ni-Si-Cr的热变形激活能Q为265.9 kJ/mol,从Zener-Hollomon参数的指数函数形式得到应变速率解析表达式.  相似文献   

2.
电连接器用铜合金为目前5G通讯、新能源汽车等领域的重要材料,Cu-Ni-Si系合金因其优异的力学电学性能、良好的抗应力松弛性能成为该研究背景下广泛应用的材料。目前尚缺乏热变形制度对该合金显微组织影响机理的研究。本文研究了变形温度在600~950℃、应变速率在0.01~10.00 s-1条件下的高溶质含量Cu-Ni-Si合金铸锭的热变形行为,发现在高应变速率下,硬化和软化在变形过程中交替占据主导地位,流变应力呈“波浪形”变化。建立了合金的热变形本构方程和热加工图,获得了高溶质含量Cu-Ni-Si合金的热变形温度为900~950℃,探究了不同变形条件下合金热变形过程的软化机制。结果表明,在950℃低应变速率时,合金的再结晶主要以晶界弓出形核的不连续动态再结晶为主,而在应变速率较高时,主要发生位错转动合并形成新的大角晶界的连续动态再结晶。  相似文献   

3.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

4.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,绘制了真应力-真应变曲线.分别讨论了变形温度、变形速率和合金元素对CuNiSi系列合金在高温压缩变形中的行为的影响.结果表明,应变速率和变形温度的变化对合金的再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也越容易发生动态再结晶,所对应的峰值应力也越低,且CuNiSiP合金的流变应力在相同条件下高于CuNiSiAg合金的流变应力,最后求得了CuNiSiP和CuNiSiAg合金的变形激活能.  相似文献   

5.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为400℃,应变速率为0.01~10.0 s-1的等温压缩实验,获得热变形过程中的真应力-真应变曲线。结果表明:应变速率ε≥1.0 s-1时,实际变形温度高于预设温度,产生变形热效应。合金发生动态再结晶的临界应变随着应变速率的升高而增加,在较高应变速率条件下(ε≥1.0 s-1),流变应力曲线出现锯齿形波动,合金发生了不连续动态再结晶。利用光学显微镜和透射电镜分析了应变速率对3003铝合金热变形组织演变的影响。结果表明:应变速率越小,合金越容易发生动态再结晶,当应变速率为10.0 s-1时,由于变形热效应的作用,合金也发生了动态再结晶。低应变速率(ε≤0.1 s-1)条件下,提高应变速率可以明显细化晶粒,并且在相同应变下,动态再结晶体积分数随应变速率的增大而减小,综合考虑动态再结晶晶粒的大小和组织均匀性,较佳的应变速率为0.1 s-1。  相似文献   

6.
Ti-1300合金锻造加工的热压缩模拟   总被引:1,自引:1,他引:0  
采用Gleeble-1500热模拟机对Ti-1300近β钛合金进行热压缩变形,研究其在温度为800~1010℃、应变速率为0.01~10 s-1、最大变形量为60%条件下的热变形行为.对热变形后的组织进行分析可知,在低应变速率下,主要发生动态再结晶;在高应变速率下,主要发生动态回复.根据试验数据得出了该合金的加工图,结果表明,Ti-1300合金在高应变速率下变形容易发生流变失稳现象,因此其锻造工艺应宜在较低的变形速率下进行,可得较细小的等轴动态再结晶组织.  相似文献   

7.
通过热模拟压缩试验分析了50SiMnVB合金钢在应变速率0.01~10 s-1、变形温度800~1000℃下的高温热变形行为。利用金相显微镜观察了钢压缩变形后的显微组织。结果表明:50SiMnVB合金钢热变形过程中出现了典型的动态再结晶(DRX)现象,应变速率对合金DRX影响较小,而温度影响较大,且应变速率越小、温度越高,越容易发生动态再结晶。根据试验结果,基于应力应变曲线,确定了钢DRX发生的临界应变,并建立了临界应变模型。  相似文献   

8.
在Gleebe-1500型热模拟试验机上进行了TC11合金在变形温度1023~1233K、应变速率0.001~10.0s-1、变形程度30%~70%时的热模拟压缩试验.结果表明,在α+β两相区变形时,变形温度对初生α相晶粒尺寸有影响;高应变速率下变形时,在一定的变形温度下合金内部将发生动态再结晶,且随变形程度增大,再结晶温度逐渐降低.同时,应变速率、变形程度和变形温度对合金动态再结晶发生的影响逐渐减小;确定了合金发生动态再结晶的最佳变形参数是在应变速率1.0 s-1附近,变形程度约50%,变形温度1123~1213K.  相似文献   

9.
采用Gleeble3800热压缩模拟试验机研究了新型超高强韧TB17钛合金775~905℃温度范围内、应变速率0.001~10 s~(-1)条件下的热变形行为。分析了该合金在热变形过程中流变应力软化特点及显微组织演变规律,建立了该合金Arrhenius型本构方程。结果表明:采用不同变形温度,TB17钛合金峰值应力对应变速率敏感程度不同,在相变温度以下变形时,峰值应力对低应变速率敏感;而在相变温度以上变形,峰值应力对高应变速率敏感。应变速率对TB17钛合金显微组织具有重要影响,合金应变速率大于0.1 s~(-1)时,以发生动态回复为主,而应变速率为0.001~0.1 s~(-1)时以发生动态再结晶为主;降低应变速率有利于动态再结晶发生,合金在应变速率0.001 s~(-1)时可获得粒度约25μm的β晶粒。变形温度对动态再结晶具有重要影响,在相变温度以下变形仅发生初生α相再结晶,而在相变温度以上变形则发生β相动态再结晶。TB17钛合金在相变点温度以下的热变形激活能为538.4 kJ/mol,在相变点温度以上的热变形激活能为397.4 kJ/mol,该合金在775~905℃热变形软化机制为晶界滑移机制。  相似文献   

10.
铜合金热变形行为研究   总被引:4,自引:2,他引:2  
在Gleeble-1500D热力模拟试验机上采用等温压缩试验,对Cu-Ni-Si-P合金和Cu-Ni-Si-Ag合金在高温压缩变形中的流变应力行为和组织变化进行了研究.结果表明,变形温度越高,合金越容易发生动态再结晶,应变速率越小,合金也越容易发生动态再结晶,且Cu-Ni-Si-P合金的流变应力在相同条件下高于Cu-Ni-Si-Ag合金的流变应力;同时变形温度对合金显微组织影响较大,在同样条件下,Cu-Ni-Si-Ag合金的晶粒尺寸大于Cu-Ni-Si-P合金的晶粒尺寸.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号