首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
We have analyzed the pattern of expression of several genes implicated in limb initiation and outgrowth using limbless chicken embryos. We demonstrate that the expressions of the apical ridge associated genes, Fgf-8, Fgf-4, Bmp-2 and Bmp-4, are undetectable in limbless limb bud ectoderm; however, FGF2 protein is present in the limb bud ectoderm. Shh expression is undetectable in limbless limb bud mesoderm. Nevertheless, limbless limb bud mesoderm shows polarization manifested by the asymmetric expression of Hoxd-11, -12 and -13, Wnt-5a and Bmp-4 genes. The posterior limbless limb bud mesoderm, although not actually expressing Shh, is competent to express it if supplied with exogenous FGF or transplanted to a normal apical ridge environment, providing further evidence of mesodermal asymmetry. Exogenous FGF applied to limbless limb buds permits further growth and determination of recognizable skeletal elements, without the development of an apical ridge. However, the cells competent to express Shh do so at reduced levels; nevertheless, Bmp-2 is then rapidly expressed in the posterior limbless mesoderm. limbless limb buds appear as bi-dorsal structures, as the entire limb bud ectoderm expresses Wnt-7a, a marker for dorsal limb bud ectoderm; the ectoderm fails to express En-1, a marker of ventral ectoderm. As expected, C-Lmx1, which is downstream of Wnt-7a, is expressed in the entire limbless limb bud mesoderm. We conclude that anteroposterior polarity is established in the initial limb bud prior to Shh expression, apical ridge gene expression or dorsal-ventral asymmetry. We propose that the initial pattern of gene expressions in the emergent limb bud is established by axial influences on the limb field. These permit the bud to emerge with asymmetric gene expression before Shh and the apical ridge appear. We report that expression of Fgf-8 by the limb ectoderm is not required for the initiation of the limb bud. The gene expressions in the pre-ridge limb bud mesoderm, as in the limb bud itself, are unstable without stimulation from the apical ridge and the polarizing region (Shh) after budding is initiated. We propose that the defect in limbless limb buds is the lack of a dorsal-ventral interface in the limb bud ectoderm where the apical ridge induction signal would be received and an apical ridge formed. These observations provide evidence for the hypothesis that the dorsal-ventral ectoderm interface is a precondition for apical ridge formation.  相似文献   

2.
Normal pattern formation during embryonic development requires the regulation of cellular competence to respond to inductive signals. In the Xenopus blastula, vegetal cells release mesoderm-inducing factors but themselves become endoderm, suggesting that vegetal cells may be prevented from expressing mesodermal genes in response to the signals that they secrete. We show here that addition of low levels of basic fibroblast growth factor (bFGF) induces the ectopic expression of the mesodermal markers Xbra, MyoD and muscle actin in vegetal explants, even though vegetal cells express low levels of the FGF receptor. Activin, a potent mesoderm-inducing agent in explanted ectoderm (animal explants), does not induce ectopic expression of these markers in vegetal explants. However, activin-type signaling is present in vegetal cells, since the vegetal expression of Mix.1 and goosecoid is inhibited by the truncated activin receptor. These results, together with the observation that FGF is required for mesoderm induction by activin, support our proposal that a maternal FGF acts at the equator as a competence factor, permitting equatorial cells to express mesoderm in response to an activin-type signal. The overlap of FGF and activin-type signaling is proposed to restrict mesoderm to the equatorial region.  相似文献   

3.
Caudalization, which is proposed to be one of two functions of the amphibian organizer, initiates posterior pathways of neural development in the dorsalized ectoderm. In the absence of caudalization, dorsalized ectoderm only expresses the most anterior (archencephalic) differentiation. In the presence of caudalization, dorsalized ectorderm develops various levels of posterior neural tissues, depending on the extent of caudalization. A series of induction experiments have shown that caudalization is mediated by convergent extension: cell motility that is based on directed cell intercalation, and is essential for the morphogenesis of posterior axial tissues. During amphibian development, convergent extension is first expressed all-over the mesoderm and, after mesoderm involution, it becomes localized to the posterior mid-dorsal mesoderm, which produces notochord. This expression pattern of specific down regulation of convergent extension is also followed by the expression of the brachyury homolog. Furthermore, mouse brachyury has been implicated in the regulation of tissue elongation on the one hand, and in the control of posterior differentiation on the other. These observations suggest that protein encoded by the brachyury homolog controls the expression of convergent extension in the mesoderm. The idea is fully corroborated by a genetic study of mouse brachyury, which demonstrates that the gene product produces elongation of the posterior embryonic axis. However, there exists evidence for the induction of posterior dorsal mesodermal tissues, if brachyury homolog protein is expressed in the ectoderm. In both cases the brachyury homolog contributes to caudalization. A number of other genes appear to be involved in caudalization. The most important of these is pintavallis, which contains a fork-head DNA binding domain. It is first expressed in the marginal zone. After mesoderm involution, it is present not only in the presumptive notochord, but also in the floor plate. This is in contrast to the brachyury homolog, whose expression is restricted to mesoderm. The morphogenetic effects of exogenous RA on anteroposterior specification during amphibian embryogenesis are reviewed. The agent inhibits archencephalic differentiation and enhances differentiation of deuterencephalic and trunk levels. Thus the effect of exogenous RA on morphogenesis of CNS is very similar to that of caudalization, which is proposed to occur through the normal action of the organizer. According to a detailed analysis of the effect of lithium on morphogenesis induced by the Cynops organizer, lithium has a caudalizing effect closely comparable with that of RA. Furthermore, lithium induces convergent extension in the prechordal plate, which normally does not show cell motility.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The apical ectodermal ridge (AER) is a specialized thickening of the distal limb ectoderm, and its signals are known to support limb morphogenesis. The expression of a homeobox gene, Msx1, in the distal limb mesoderm depends on signals from the AER. In the present paper it is reported that Msx1 expression in the distal mesoderm is necessary for the transfer of AER signals in chick limb buds. Interruption of AER-mesoderm interaction by insertion of a thick filter led to the inhibition of pattern specification in the mesoderm just under the filter. In such cases, the expression of Msx1 disappeared in the mesoderm under the filter, suggesting that AER is able to signal over short ranges. In advanced limb buds, Msx1 is also expressed in the proximal mesoderm under the anterior ectoderm. However, it was found that a grafted antero-proximal mesoderm shows no inhibitory effects on pattern specification of the host mesoderm, as is the case with the distal mesoderm. On the other hand, grafted mesoderms without potent Msx1 re-expression, even underneath AER, disturbed normal limb development. In such cases, the expression of Msx1 disappeared in the mesoderm under the grafts, whereas Fgf-8 expression was maintained in the AER above the graft. These results indicate that the expression of Msx1 in the mesoderm is important for the transfer of AER signals.  相似文献   

5.
After invagination of the mesodermal primordium in the gastrulating Drosophila embryo, the internalized cells migrate in a dorsolateral direction along the overlying ectoderm. This movement generates a stereotyped arrangement of mesodermal cells that is essential for their correct patterning by later position-specific inductive signals. We now report that proper mesodermal cell migration is dependent on the function of a fibroblast growth factor (FGF) receptor encoded by heartless (htl). In htl mutant embryos, the mesoderm forms normally but fails to undergo its usual dorsolateral migration. As a result, cardiac, visceral, and dorsal somatic muscle fates are not induced by Decapentaplegic (Dpp), a transforming growth factor beta family member that is derived from the dorsal ectoderm. Visceral mesoderm can nevertheless be induced by Dpp in the absence of htl function. Ras1 is an important downstream effector of Htl signaling because an activated form of Ras1 partially rescues the htl mutant phenotype. The evolutionary conservation of htl function is suggested by the strikingly similar mesodermal migration and patterning phenotypes associated with FGF receptor mutations in species as diverse as nematode and mouse. These studies establish that Htl signaling provides a vital connection between initial formation of the embryonic mesoderm in Drosophila and subsequent cell-fate specification within this germ layer.  相似文献   

6.
An early step in the development of vertebrae, ribs, muscle, and dermis is the differentiation of the somitic mesoderm into dermomyotome dorsally and sclerotome ventrally. To analyze this process, we have developed an in vitro assay for somitic mesoderm differentiation. We show that sclerotomal markers can be induced by a diffusible factor secreted by notochord and floor plate and that heterologous cells expressing Sonic hedgehog (shh/vhh-1) mimic this effect. In contrast, expression of dermomyotomal markers can be caused by a contact-dependent signal from surface ectoderm and a diffusible signal from dorsal neural tube. Our results extend previous studies by suggesting that dorsoventral patterning of somites involves the coordinate action of multiple dorsalizing and ventralizing signals and that a diffusible form of Shh/Vhh-1 mediates sclerotome induction.  相似文献   

7.
The ectoderm of the vertebrate limb and feather bud are epithelia that provide good models for epithelial patterning in vertebrate development. At the tip of chick and mouse limb buds is a thickening, the apical ectodermal ridge, which is essential for limb bud outgrowth. The signal from the ridge to the underlying mesoderm involves fibroblast growth factors. The non-ridge ectoderm specifies the dorsoventral pattern of the bud and Wnt7a is a dorsalizing signal. The development of the ridge involves an interaction between dorsal cells that express radical fringe and those that do not. There are striking similarities between the signals and genes involved in patterning the limb ectoderm and the epithelia of the Drosophila imaginal disc that gives rise to the wing. The spacing of feather buds involves signals from the epidermis to the underlying mesenchyme, which again include Wnt7a and fibroblast growth factors.  相似文献   

8.
9.
10.
Exposure of vertebrate embryos to ethanol causes cyclopia, but little is known about the underlying mechanisms of this effect. Here we show that cyclopia can be induced in the zebrafish by a short ethanol treatment during early gastrula stages and is accompanied by loss of gene expression characteristic of the ventral aspects of the fore- and midbrain. Interestingly, defects in the expression of ventral brain markers are linked to impaired migration of the prechordal plate mesoderm indicating that the correct position of the prechordal plate mesoderm under the anterior neural plate in the zebrafish embryo is required for specification of the anterior neural midline. Ethanol-induced cyclopia does not, however, impair the induction of anterior neuroectodermal structures in general. Finally, as genes like goosecoid and islet-1 are expressed in prechordal plate cells in a temporal pattern similar to control embryos despite the ectopic position of expressing cells, it appears that regulation of prechordal plate-specific gene expression is largely independent of the final position of the prechordal plate.  相似文献   

11.
12.
13.
14.
Patterning of the posterior end in animals is not well understood. Homologs of Drosophila even-skipped (eve) have a similar posterior expression pattern in many animals, and in vertebrates they are linked physically to the "posterior" ends of homeotic clusters (HOM-C), suggesting a conserved role in posterior development. However, the function of this posterior expression is not known. Here I show that the Caenorhabditis elegans gene vab-7 encodes an eve homolog that is required for posterior development and expressed in a pattern strikingly similar to that of vertebrate eve genes. Using a four-dimensional recording system, I found that posterior body muscles and the posterior epidermis are patterned abnormally in vab-7 mutants, but commitment to muscle and epidermal fates is normal. Furthermore, vab-7 activity is required for the complete expression of the most posterior HOM-C gene egl-5 in muscle cells, supporting the idea that eve homologs may act with the HOM-C to determine posterior cell fates. The conservation of sequence and expression pattern between vab-7 and eve homologs in other animals argues that most eve genes have posterior mesodermal and ectodermal patterning functions.  相似文献   

15.
BACKGROUND: Bone morphogenetic protein (BMP) plays an important role in mesoderm patterning in Xenopus. The ectopic expression of BMP-4 protein hyperventralizes embryos, whereas embryos expressing a BMP-2/4 dominant-negative receptor (DNR) are hyperdorsalized. Mesoderm is initially induced in the marginal zone by cells in the underlying vegetal pole. While much is known about BMP's expression and role in patterning the marginal zone, little is known about its early role in regulating vegetal mesoderm induction centre formation. RESULTS: The role of BMP in regulating formation of vegetal mesoderm inducing centres during early Xenopus development was examined. Ectopic BMP-4 expression in vegetal pole cells inhibited dorsal mesoderm induction but increased ventral mesoderm induction when recombined with animal cap ectoderm in Nieuwkoop explants. 32-cell embryos injected with BMP-4 RNA in the most vegetal blastomere tier were not hyperdorsalized by LiCl treatment. The ectopic expression of Smad or Mix.1 proteins in the vegetal pole also inhibited dorsal mesoderm induction in explants and embryos. Expression of the BMP 2/4 DNR in the vegetal pole increased dorsal mesoderm induction and inhibited ventral mesoderm induction in explants and embryos. CONCLUSIONS: These results support a role for BMP signalling in regulating ventral vegetal and dorsal vegetal mesoderm induction centre formation during early Xenopus development.  相似文献   

16.
Drosophila homeotic genes and their vertebrate cognates, the Hox genes, encode homeodomain proteins that are thought to control segment-specific morphogenesis by regulating subordinate target genes. Although expression of many genes is thought to be influenced by homeotic/Hox function, little is known about the genes they directly regulate in the developing embryo. One of the Drosophila homeotic genes is Ultrabithorax (Ubx) that specifies the identity of specific thoracic and abdominal metameres. Towards identifying genes directly regulated by Ubx we have mapped the binding sites of Ubx proteins (UBX) in polytene chromosomes. We found that the UBX isoforms Ia and IVa accumulate in about 100 discrete chromosomal sites. Most, if not all, the sites are the same for the two UBX isoforms. These sites are all euchromatic, include both bands and interbands and are reproducible from chromosome to chromosome. Some of these sites correspond to the locations of known genes that are good candidates, or are known to be, under direct Ubx control.  相似文献   

17.
The hypothesis that the endothelial and hemopoietic lineages have a common ontogenic origin is currently being revived. We have shown previously by means of quail/chick transplantations that two subsets of the mesoderm give rise to endothelial precursors: a dorsal one, the somite, produces pure angioblasts (angiopoietic potential), while a ventral one, the splanchnopleural mesoderm, gives rise to progenitors with a dual endothelial and hemopoietic potential (hemangiopoietic potential). To investigate the cellular and molecular controls of the angiopoietic/hemangiopoietic potential, we devised an in vivo assay based on the polarized homing of hemopoietic cell precursors to the floor of the aorta detectable in the quail/chick model. In the present work, quail mesoderm was grafted, after various pretreatments, onto the splanchnopleure of a chick host; the homing pattern and nature of graft-derived QH1(+) cells were analyzed thereafter. We report that transient contact with endoderm or ectoderm could change the behavior of cells derived from treated mesoderm, and that the effect of these germ layers could be mimicked by treatment with several growth factors VEGF, bFGF, TGFbeta1, EGF and TGF(&agr;), known to be involved in endothelial commitment and proliferation, and/or hemopoietic processes. The endoderm induced a hemangiopoietic potential in the associated mesoderm. Indeed, the association of somatopleural mesoderm with endoderm promoted the 'ventral homing' and the production of hemopoietic cells from mesoderm not normally endowed with this potential. The hemangiopoietic induction by endoderm could be mimicked by VEGF, bFGF and TGFbeta1. In contrast, contact with ectoderm or EGF/TGF(&agr;) treatments totally abrogated the hemangiopoietic capacity of the splanchnopleural mesoderm, which produced pure angioblasts with no 'ventral homing' behaviour. We postulate that two gradients, one positive and one negative, modulate the angiopoietic/hemangiopoietic potential of the mesoderm.  相似文献   

18.
19.
20.
The Drosophila EGF receptor (DER) is activated by secreted Spitz to induce different cell fates in the ventral ectoderm. Processing of the precursor transmembrane Spitz to generate the secreted form was shown to be the limiting event, but the cells in which processing takes place and the mechanism that may generate a gradient of secreted Spitz in the ectoderm were not known. The ectodermal defects in single minded (sim) mutant embryos, in which the midline fails to develop, suggested that the midline cells contribute to patterning of the ventral ectoderm. This work shows that the midline provides the site for Spitz expression and processing. The Rhomboid and Star proteins are also expressed and required in the midline. The ectodermal defects of spitz, rho or Star mutant embryos could be rescued by inducing the expression of the respective normal genes only in the midline cells. Rho and Star thus function non-autonomously, and may be required for the production or processing of the Spitz precursor. Secreted Spitz is the only sim-dependent contribution of the midline to patterning the ectoderm, since the ventral defects observed in sim mutant embryos can be overcome by expression of secreted Spitz in the ectoderm. While ectopic expression of secreted Spitz in the ectoderm or mesoderm gave rise to ventralization of the embryo, increased expression of secreted Spitz in the midline did not lead to alterations in ectoderm patterning. A mechanism for adjustment to variable levels of secreted Spitz emanating from the midline may be provided by Argos, which forms an inhibitory feedback loop for DER activation. The production of secreted Spitz in the midline, may provide a stable source for graded DER activation in the ventral ectoderm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号