首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Samples of the quaternary Ti–20Nb–10Zr–5Ta alloy were immersed in Hanks’ simulated physiological solution and in minimum essential medium (MEM) for 25 days. Samples of Ti metal served as controls. During immersion, the concentration of ions dissolved in MEM was measured by inductively coupled plasma mass spectrometry, while at the end of the experiment the composition of the surface layers was analyzed by X-ray photoelectron spectroscopy, and their morphology by scanning electron microscopy equipped for chemical analysis. The surface layer formed during immersion was comprised primarily of TiO2 but contained oxides of alloying elements as well. The degree of oxidation differed for different metal cations; while titanium achieved the highest valency, tantalum remained as the metal or is oxidized to its sub-oxides. Calcium phosphate was formed in both solutions, while formation of organic-related species was observed only in MEM. Dissolution of titanium ions was similar for metal and alloy. Among alloying elements, zirconium dissolved in the largest quantity. The long-term effects of alloy implanted in the recipient’s body were investigated in MEM, using two types of human cells—an osteoblast-like cell line and immortalized pulmonary fibroblasts. The in vitro biocompatibility of the quaternary alloy was similar to that of titanium, since no detrimental effects on cell survival, induction of apoptosis, delay of growth, or change in alkaline phosphatase activity were observed on incubation in MEM.  相似文献   

2.
Corrosion behavior of a multifunctional biomedical titanium alloy Ti–24Nb–4Zr–8Sn (wt.%) in 0.9% NaCl, Hank's solution and artificial saliva at 37 °C was investigated using open circuit potential, impedance spectroscopy and potentiodynamic polarization techniques, and some results were compared with pure titanium and Ti–6Al–4V alloy. The results showed that the alloy exhibited good corrosion resistance due to the formation of a protective passive film consisting mainly of TiO2 and Nb2O5, and a little of ZrO2 and SnO2. Ca ions were detected in the passive film as the alloy immersed in Hank′s and artificial saliva solutions and they have negative effect on corrosion resistance. The EIS results indicated that either a duplex film with an inner barrier layer and an outer porous layer or a single passive layer was formed on the surface, and they all transformed into stable bilayer structure as the immersion time increased up to 24 h. The polarization curves demonstrated that the alloy had a wider passive region than pure titanium and Ti–6Al–4V alloy and its corrosion current density (less than 0.1 μA/cm2) is comparable to that of pure titanium.  相似文献   

3.
The electrochemical corrosion behaviour of biomedical Ti–25Nb–3Mo–3Zr-2Sn (TLM) alloy was investigated in various simulated body fluids at 37±0·5°C utilising potentiodynamic polarisation and current–time curves. The Ti–6Al–4V (TC4) alloy was also investigated to make a comparison. The different simulated body fluids comprised of 0·9%NaCl saline, Hank’s and Ringer’s solution were employed. The effect of heat treatment on the electrochemical behaviour of the TLM alloy was also considered. It was discovered that all the test specimens were passivated once immersed into the simulated body fluids. It was also found that the TLM alloy has poorer corrosion resistance in Hank’s solution, due to the chemical composition of the Hank’s. After different heat treated, the TLM alloy had different phases and microstructure, and the corrosion behaviour of the TLM alloy was different. In this study, after the heat treatment of 760°C/1 h/AC+550°C/6 h/AC, the TLM alloy had better corrosion resistance. Owing to the corrosion resistance of the TLM alloy was influenced by numerous factors, such as microstructure and the chemical composition of electrolyte, the corrosion behaviour of the TLM alloy is complex. By comparing with the corrosion behaviour of the TC4 alloy, the TLM alloy has poorer corrosion resistant than the TC4 alloy under the same conditions. But the current–time curves of the TLM alloy were more stable than these of the TC4 alloy with further experiments, because of the more passivation film on the surface of the TLM alloy.  相似文献   

4.
Surface modifications by thermal and hydrothermal treatments in solution with calcium ions were investigated with the aim of improving bioactivity and wear resistance of a Ti–Nb–Zr–Sn alloy. The results showed that the first step of thermal treatment at 600 °C significantly increases the surface hardness and energy by forming oxides of Ti and Nb. The second step of hydrothermal treatment in a boiled supersaturated Ca(OH)2 solution induces a bioactive layer containing CaTiO3, CaCO3, Ca(OH)2 and TiO2. Using this treatment, a complete Ca–P layer can be formed within 3 days of soaking in simulated body fluid (SBF). The origin of such fast apatite formation was analyzed by comparison with single step thermal or hydrothermal treatment and with thermal plus hydrothermal treatment without calcium ions. The results suggest that the increase of surface energy by thermal treatment and the incorporation of calcium ions by the hydrothermal treatment in calcium ion solution play important roles in the formation of bioactive apatite.  相似文献   

5.
We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti–13Nb–Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end, potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 °C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material.  相似文献   

6.
Corrosion behavior of a newly developed multifunctional β-type Ti–23Nb–0.7Ta–2Zr–O (mol%, TNTZO) alloy in Ringer's physiological solution was evaluated by open circuit potential, potentiodynamic polarization and X-ray photoelectron spectroscopy (XPS) techniques. Corrosion property of Ti–6Al–4V was also measured for comparison. The results showed that the TNTZO alloy possesses much better corrosion property than the Ti–6Al–4V alloy, corroborated by a high corrosion potential and broad passive region, which is attributed to the stable and inert passive TiO2 film modified by the oxides of Nb, Ta and Zr on the surface of the TNTZO alloy.  相似文献   

7.
Despite the importance of Nb–Zr alloys as candidate materials for biomedical applications, little attention has been given to their processing and the development of new or improved structures. Here, we explore the viability of synthesizing a nano/sub-micron grain structured Nb–Zr alloy through the use of mechanical alloying (MA) and spark-plasma sintering (SPS). The sintered samples were characterized through measurements of densification, Vickers hardness (HV), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The effect of the SPS parameters on the microstructure and mechanical properties of the sintered alloys was also investigated. Moreover, electrochemical corrosion analyses were performed by a means of a conventional three-electrode cell to assess the corrosion resistance of the developed alloys in Simulated Body Fluids (SBF) medium. A nano/sub-micron grain structured Nb–Zr alloy with an average grain size of between 100 and 300 nm was produced using the MA-SPS techniques. A maximum hardness and relative density of 584 HV and 97.9% were achieved, respectively. Moreover, the nano/sub-micron grain structured Nb–Zr alloy exhibited higher corrosion resistance in SBF medium, which makes this alloy is a promising candidate for use in biomedical applications.  相似文献   

8.
Abstract

In the present paper, SiO2 glass ceramic was joined to Ti–6Al–4V alloy with 35Ti–35Zr–10Ni–15Cu (wt-%) filler foil. The whole brazing process was performed under vacuum circumstances at different temperatures (850–1000°C) for several holding times (1–30 min). According to results of scanning electron microscopy, energy dispersive spectrometry, electron probe X-ray microanalysis and X-ray diffraction analysis, the reaction products of the interface are Ti2O, Zr3Si2, Ti5Si3, Ti based solid solution and Ti2(Cu,Ni). There is residual TiZrNiCu braze alloy on the SiO2 glass ceramic/Ti–6Al–4V alloy interface after brazing. Besides, the interface evolution model of the joint was described by four stages: diffusion and solution among atoms, formation of reaction products, precipitation and growth of reaction layers respectively.  相似文献   

9.
10.
The deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of Zr, V, and Ti was investigated under uniaxial tension and compression. It was found that after T6 heat treatment the change of the load from tension to compression caused an increase in strength from 348 MPa to 417 MPa and in fracture strain from 1.3% to 37.0%. As calculated based on Mott’s theory of strain hardening, the dislocation slip distance in compression was twice of that in tension. The observed differences in alloy fracture strain were explained by changes in re-orientation and fracturing of the eutectic silicon particles. Due to deformation, fracturing of the silicon particles occurred with major cracks being parallel to the compression axis but perpendicular to the tensile load axis. An influence of deformation mode on change in orientation of the silicon particles was revealed. While for tensile load, the silicon particles were stationary during deformation and exhibited an orientation practically the same as in unstrained structure, for compression there was a substantial change in the particle orientation, especially for an angle between the load axis and the particle axis in the range from 0° to 30°.  相似文献   

11.
Titanium alloy Ti–15–3–3 (Beta-21S) was implanted with nitrogen ions by plasma immersion ion implantation at 700, 750 and 800 °C. Micro Raman and XPS results confirm the formation of nitrides after implantation. Corrosion current density (icorr) of the treated samples in simulated body fluid (Hank’s solution) is higher than that of the substrate. Treated samples also exhibit lower charge transfer resistance and higher double layer capacitance as compared to that of substrate in electrochemical impedance spectroscopic studies. However, no corrosion related effects are observed after 28 days of immersion in SBF. EDS results show the presence of oxygen after corrosion studies. XPS spectra from the implanted samples show the presence of nitride and oxynitride on the surface and formation of oxide due to corrosion process.  相似文献   

12.
Monotonic and cyclic tests were used to assess the influence of micro-additions of Ti, V and Zr on the deformation behavior of the Al–7Si–1Cu–0.5Mg (wt.%) alloy in as-cast and T6 heat treated conditions and to compare the results with alloys of similar chemistry described in the literature. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu, Mg and Fe based phases Al2.1Cu, Al8.5Si2.4Cu, Al7.2Si8.3Cu2Mg6.9 and Al14Si7.1FeMg3.3. In addition, the micro-size Zr–Ti–V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr and Al5.1Si35.4Ti1.6Zr5.7Fe were present in the as-cast state. During solution treatment, Cu based phases were completely dissolved, while the eutectic silicon, Fe- and Zr–Ti–V-rich intermetallics experienced only partial dissolution. The monotonic test results showed that the T6 heat treated alloy achieved a tensile strength of 343 MPa and a compressive strength of 418 MPa. Also, the cyclic yield stress of the studied alloy in the T6 temper condition was higher than the monotonic value and reached 335 MPa. The fatigue life of the studied alloy was substantially longer than that of the reference alloy with the same base but lower additions of V, Zr and Ti, reported in the literature. The fractography revealed the tensile crack propagation through the eutectic Si and primary phases, exhibiting intergranular fracture along with some cleavage-like features of the plate-shape Zr–Ti–V-rich intermetallics with a presence of fatigue striations on the latter, indicating their ductile nature. It is believed that the intermetallic precipitates containing Zr, Ti and V improve the fatigue life of the studied alloy in the T6 condition.  相似文献   

13.
The influence of deformation on the corrosion behavior of a newly developed multifunctional beta titanium alloy Ti–23Nb–0.7Ta–2Zr–O (mol%) in Ringer's solution at 310 K was evaluated using an electron backscatter diffraction technique and electrochemical measurements. The results showed that the effect of deformation on the corrosion resistance of the beta titanium alloy is complicated. Small levels of plastic deformation are detrimental to the corrosion resistance, whereas large deformations tend to eliminate this detrimental effect.  相似文献   

14.
The electrochemical activities of Ir–Nb binary alloys were investigated as functions of the alloy compositions, crystal structures, and surface morphologies for a hydrogen peroxide and ascorbic acid redox reaction. High activities for the redox reaction of hydrogen peroxide were observed when pure Ir and an alloy with a composition of 77 at% Ir–23 at% Nb (Ir–23Nb) were used. Tests on eight electrodes—Ir, Ir–13Nb, Ir–17Nb, Ir–23Nb, Ir–30Nb, Ir–43Nb, Ir–62Nb, and Nb—showed that at a constant potential difference of 0.7 V vs. Ag/AgCl, the Ir–23Nb electrode had the best hydrogen peroxide oxidation capability: 9.2 μA/mm2 for 2 mM hydrogen peroxide. Apart from Nb, Ir–23Nb gave the best performance in terms of preferential hydrogen peroxide oxidation against ascorbic acid. Subsequently, the Ir and Ir–23Nb electrodes were used for the fabrication of amperometric glucose sensors. We first coated the two electrodes with a γ-aminopropyltriethoxysilane membrane and then with a glucose oxidase membrane. Tests on the Ir and Ir–23Nb electrode glucose sensors showed that the latter had better glucose detection capability than the former: 0.226 μA/(mm2 mM) for the Ir–23Nb sensor with 1.67 mM glucose. We investigated the relationship between the electrode responses to both hydrogen peroxide and ascorbic acid and the electrode surface structures.  相似文献   

15.
This study aimed to evaluate the effects of Ti–Nb–Zr–Ta–Si alloy implants on mineral apposition rate and new BIC contact in rabbits. Twelve Ti–Nb–Zr–Ta–Si alloy implants were fabricated and placed into the right femur sites in six rabbits, and commercially pure titanium implants were used as controls in the left femur. Tetracycline and alizarin red were administered 3 weeks and 1 week before euthanization, respectively. At 4 weeks and 8 weeks after implantation, animals were euthanized, respectively. Surface characterization and implant-bone contact surface analysis were performed by using a scanning electron microscope and an energy dispersive X-ray detector. Mineral apposition rate was evaluated using a confocal laser scanning microscope. Toluidine blue staining was performed on undecalcified sections for histology and histomorphology evaluation. Scanning electron microscope and histomorphology observation revealed a direct contact between implants and bone of all groups. After a healing period of 4 weeks, Ti–Nb–Zr–Ta–Si alloy implants showed significantly higher mineral apposition rate compared to commercially pure titanium implants (P?<?0.05), whereas there was no significant difference between Ti–Nb–Zr–Ta–Si alloy implants and commercially pure titanium implants (P?>?0.05) at 8 weeks. No significant difference of bone-to-implant contact was observed between Ti–Nb–Zr–Ta–Si alloy implants and commercially pure titanium implants implants after a healing period of 4 weeks and 8 weeks. This study showed that Ti–Nb–Zr–Ta–Si alloy implants could establish a close direct contact comparedto commercially pure titanium implants implants, improved mineral matrix apposition rate, and may someday be an alternative as a material for dental implants.  相似文献   

16.
Ti–XNb–10Ta–5Zr (mass %) alloys based on nominal compositions of Ti–35Nb–10Ta–5Zr, Ti–30Nb–10Ta–5Zr, and Ti–25Nb–10Ta–5Zr were fabricated through powder metallurgy and forging and swaging processes for biomedical applications. The tensile deformation mechanisms of the Ti–25Nb–10Ta–5Zr, Ti–30Nb–10Ta–5Zr, and Ti–35Nb–10Ta–5Zr alloys were investigated in situ by X-ray diffraction analysis under several loading conditions.Under the loading conditions, the X-ray diffraction peaks of all the specimens shifted to higher angles than those obtained under the unloading conditions. For the Ti–30Nb–10Ta–5Zr alloy, the elastic deformation is considered to progress continuously in a different crystal direction although after the elastic strain reaches elastic limit in the crystal direction where the elastic limit is the smallest, slip deformation occurs in that crystal direction. The elastic modulus of this alloy appears to decrease in terms of strain over the proportional limit. Thus, the elastic deformation behavior of the Ti–30Nb–10Ta–5Zr alloy does not obey Hooke's law.  相似文献   

17.
Abstract

Superplasticity in terms of total tensile elongation was studied in a titanium alloy of nominal composition Ti–6·5Al–3·3Mo–1·6Zr (wt-%) for three strain rates (1·04 × 10?3, 2·1 × 10?3, and 4·2 × 10?3s?1) and in the temperature range 1123–1223 K for microstructures obtained by different processing schedules. Fine equiaxed microstructure with a low aspect ratio of 1·15 was accomplished in this alloy by combining two types of deformation. While the first step consists of heavy deformations for refining and intermixing the phases, a second step, consisting of light homogeneous reductions in several stages, was necessary to remove the banding that developed during the first step. The resulting microstructure underwent enormous tensile elongation (1700–1725%), even under relatively high strain rates (1·04 × 10?3 and 2·1 × 10?3s?1), making this alloy most suitable for commercial superplastic forming. The present investigation also revealed that the usual sheet rolling practice of heavy reductions to refine the microstructure leads to localised banding which could not be removed by annealing; therefore, the tensile elongation was limited to 770% only. The reason for this may be attributed to the resistance in grain boundary sliding and rotation encountered in microstructures with shear bands and grains with high aspect ratio. Strain enhanced grain growth was also greater in these microstructures.

MST/555  相似文献   

18.
The corrosion behaviour of heat treated Ti–13Zr–13Nb (TZN) and Ti–13Zr–13Nb–0.5B (TZNB) alloys in Hank’s solution has been investigated. The microstructure of the heat treated TZN alloy consisted of α, β or martensite. Addition of boron to TZN alloy led to the formation of dispersed TiB particles and modification of microstructure. In general, the furnace cooled TZN sample showed lower corrosion potential (Ecorr) than the air cooled sample. Aging of water quenched samples decreased the Ecorr value. The passive current density of TZN samples varied within a narrow range. Presence of boron in TZN alloy decreased the corrosion potential and substantially increased the passive current density. Results showed that boron deteriorated the corrosion resistance of TZN alloy.  相似文献   

19.
Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti–15Zr–4Nb–4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti–15Zr–4Nb–4Ta than the Ti–6Al–4V alloy. The potential (E10) indicating a current density of 10 μA cm−2 estimated from the anodic polarization curve was significantly higher for the Ti–15Zr–4Nb–4Ta than the Ti–6Al–4V alloy and other metals. Moreover, the oxide film (4–7 nm thickness) formed on the Ti–15Zr–4Nb–4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti–15Zr–4Nb–4Ta was higher than that of Ti–6Al–4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle''s medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti–15Zr–4Nb–4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.  相似文献   

20.
Abstract

Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti–15Zr–4Nb–4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti–15Zr–4Nb–4Ta than the Ti–6Al–4V alloy. The potential (E10) indicating a current density of 10 μA cm?2 estimated from the anodic polarization curve was significantly higher for the Ti–15Zr–4Nb–4Ta than the Ti–6Al–4V alloy and other metals. Moreover, the oxide film (4–7 nm thickness) formed on the Ti–15Zr–4Nb–4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti–15Zr–4Nb–4Ta was higher than that of Ti–6Al–4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle's medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti–15Zr–4Nb–4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号