首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
(1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 (x = 0, 0.002, 0.004, 0.006, 0.008, 0.01) lead-free piezoelectric ceramics were prepared by the conventional ceramic processing. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary between the orthorhombic and tetragonal phases was identified in the composition range of 0.004 < x < 0.006. The ceramics near the morphotropic phase boundary exhibit a strong compositional dependence and enhanced piezoelectric properties. The ceramics with 0.6 mol.% BiFeO3 exhibit good electrical properties (d33 ∼ 246 pC/N, kp ∼ 43%, Tc ∼ 285 °C, ?r ∼ 1871, and tan δ ∼ 1.96%). These results show that the (1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 ceramic is a promising lead-free piezoelectric material for applications in different devices.  相似文献   

2.
《Materials Research Bulletin》2013,48(11):4907-4910
Aurivillius-type ceramic, Sr0.6(BiNa)0.2Bi2Nb2O9 (SBNBN), was synthesized by using conventional solid-state processing. Phase structure and microstructural morphology were confirmed by X-ray diffraction analyses (XRD) and the scanning electron microscopy (SEM). Dielectric, piezoelectric and electromechanical properties of the SBNBN ceramic were investigated in detail. Curie temperature (Tc), piezoelectric coefficient (d33), electromechanical coupling coefficient kp, kt and quality factor Qm of the SBNBN ceramic were found to be 586.5 °C, 22 pC/N, 5.0%, 8.7% and 651, respectively. In addition, the reasons for varieties of the resistivity and dielectric properties at high temperature were also discussed.  相似文献   

3.
La modified SBT (Sr0.8La0.1Bi2.1Ta2O9) thin films of different thickness were fabricated on Pt/Ti/SiO2/Si substrates by the metalorganic decomposition technique. All the films were annealed layer-by-layer at 800 °C using a rapid thermal annealing furnace. X-ray diffraction analysis indicated that the relative intensity of the (2 0 0) diffraction peak [I(2 0 0)/I(1 1 5)] increased with the increase of the film thickness. Eventually, an a-axis preferentially oriented SLBT film was obtained. These results are discussed with respect to the anisotropy of the grain growth. The a-axis preferentially oriented SLBT film, whose relative intensity of the (2 0 0) peak [I(2 0 0)/I(1 1 5)] was 1.05, had a remanent polarization (2Pr) value of 21 μC/cm2 and a coercive field (2Ec) value of 70 kV/cm under the electric field of 200 kV/cm.  相似文献   

4.
(1 − x) Sr0.4Ba0.6Nb2O6xBi2O3 (0.00 ≤ x ≤ 0.20) ceramics were prepared by conventional solid-state reaction method. The microstructure, dielectric properties and PE hysteresis loops of ceramics were investigated via X-ray diffraction, scanning electron microscope (SEM), Agilent E4980A and modified Sawyer–Tower circuit, respectively. XRD results showed the obtained ceramics were of tungsten bronze structure, and second phase Sr0.4Ba0.6Bi2Nb2O9 was detected at high doping concentration. SEM results showed suitable Bi2O3 addition could reduce the sintering temperature and assist the grain growth. The dielectric characteristics exhibited diffuse phase transition phenomena, which were verified by linear fitting of the modified Curie–Weiss law. Besides, the relaxor ferroelectric properties of ceramics followed the Vogel–Fulcher relationship well. The PE hysteresis loops became slimmer with increasing the Bi2O3 addition, leading to a gradually decrease in both remnant polarization (Pr) and coercive field (Ec).  相似文献   

5.
Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) and 10% PbZrO3-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics were both prepared by a modified precursor method, which was based on the high-temperature synthesis of an oxide precursor that contained all the B-site cations for the consideration of B-site homogeneity. The dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramic was more of normal ferroelectric behavior, but the high dielectric constant (?m = 34,200 at 1 kHz) and piezoelectric constant (d33 = 709 pC/N) were observed for this composition close to the morphotropic phase boundary. Comparatively, introduction of 10% PbZrO3 into Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics enhanced the diffuse phase transition as well as the rhombohedral to tetragonal phase transition temperature, while it also kept the high dielectric constant (?m = 29,600 at 1 kHz) and piezoelectric constant (d33 = 511 pC/N).  相似文献   

6.
Sr2−xCaxBi4Ti5O18(x = 0, 0.05) powders synthesized by solid state route were uniaxially pressed and sintered at 1225 °C for 2 h. The obtained dense ceramics exhibited crystallographic anisotropy with a dominant c axis parallel to the uniaxial pressing direction which was quantified in terms of the Lotgering factor. Microstructure anisotropy of both compositions (x = 0, 0.05) consisted of plate like grains exhibiting their larger surfaces mostly perpendicular to the uniaxial pressing direction. Dielectric and ferroelectric properties of Sr2−xCaxBi4Ti5O18 ceramics were measured under an electric field (E) applied parallel and perpendicularly to uniaxial pressing direction. The obtained dielectric ?R(T) and polarization (P-E) curves depended strongly on E direction thus denoting a significant effect from microstructure and crystallographic texture. Sr2−xCaxBi4Ti5O18 properties were also significantly affected by Ca content (x): Curie temperature increased from 280 °C (x = 0) to 310 °C (x = 0.05) while ?R and remnant polarization decreased for x = 0.05. The present results are discussed within the framework of the processing and crystal structure-properties relationships of Aurivillius oxides ceramics.  相似文献   

7.
We investigated isomorphous substitution of several metal atoms in the Aurivillius structures, Bi5TiNbWO15 and Bi4Ti3O12, in an effort to understand structure-property correlations. Our investigations have led to the synthesis of new derivatives, Bi4LnTiMWO15 (Ln = La, Pr; M = Nb, Ta), as well as Bi4PbNb2WO15 and Bi3LaPbNb2WO15, that largely retain the Aurivillius (n = 1) + (n = 2) intergrowth structure of the parent oxide Bi5TiNbWO15, but characteristically tend toward a centrosymmetric/tetragonal structure for the Ln-substituted derivatives. On the other hand, coupled substitution, 2TiIV → MV + FeIII in Bi4Ti3O12, yields new Aurivillius phases, Bi4Ti3−2xNbxFexO12 (x = 0.25, 0.50) and Bi4Ti3−2xTaxFexO12 (x = 0.25) that retain the orthorhombic noncentrosymmetric structure of the parent Bi4Ti3O12. Two new members of this family, Bi2Sr2Nb2RuO12 and Bi2SrNaNb2RuO12 that are analogous to Bi2Sr2Nb2TiO12, possessing tetragonal (I4/mmm) Aurivillius structure have also been synthesized.  相似文献   

8.
In this work, the piezoelectric ceramic system of Pb[(Zr1−xTix)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3, 0.47≤x≤0.57, with composition close to the morphotropic phase boundary, was studied. From the results of X-ray diffraction and piezoelectric measurement, ceramics near x=0.51 were found at the morphotropic phase boundary (MPB) between the tetragonal and pseudocubic perovskite. The planar coupling factor (kp=0.72) is high at compositions near the MPB, but the mechanical quality factor (Qm=75) is low. The calculation of the diffuseness of phase transition shows that the region of phase coexistence of this system is broader than that of the ternary system.  相似文献   

9.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

10.
0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(PNN-PZT) ceramics with different concentration of xFe2O3 doping (where x = 0.0, 0.8, 1.2, 1.6 mol%) were synthesized by the conventional solid state sintering technique. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase. The density and grain size of Fe-doped ceramics tend to increase slightly with increasing concentration of Fe2O3. Comparing with the undoped ceramics, the piezoelectric, ferroelectric and dielectric properties of the Fe-doped PNN-PZT specimens are significantly improved. Properties of the piezoelectric constant as high as d33 ~ 956 pC/N, the electromechanical coupling factor kp ~ 0.74, and the dielectric constant εr ~ 6095 are achieved for the specimen with 1.2 mol% Fe2O3 doping sintered at 1200 °C for 2 h.  相似文献   

11.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators.  相似文献   

12.
The effect of (Li,Ce) or (K,Ce) doping on the structures and properties of bismuth layer-structured ferroelectric (BLSF) CaBi4Ti4O15-based ceramics was studied. In Ca1−x(K,Ce)x/2Bi4Ti4O15 and Ca1−x(Li,Ce)x/2Bi4Ti4O15 (0 ≤ x ≤ 0.9) compounds, the effect of the substitution on the lattice parameters was given. The XRD patterns of Ca1−x(K,Ce)x/2Bi4Ti4O15 and Ca1−x(Li,Ce)x/2Bi4Ti4O15 ceramics showed that the compounds were Aurivillius phases. SEM micrographs show that the grains of CBT-based ceramics were plate-like. Auger electron spectroscopy (AES) results showed that Li+ was present in bismuth layer-structured ferroelectrics. Based on the AES analysis and the comparisons with A-site (K,Ce) substitution, Li substitution of A-site cations in BLSF is possible. For x = 0.15 compositions, (Li,Ce) or (K,Ce) dopants can improve the high temperature resisitivity and piezoelectric constant d33 of the doped ceramics.  相似文献   

13.
The effects of reduction and Ga-doping on the physicochemical properties of A-site deficient perovskites Sr0.9Ti0.8−xGaxNb0.2O3 (x = 0, 0.05, 0.1, 0.15 and 0.2) are reported. With 10% Ga doping, the sample sintered in air and treated at 1400 °C in H2 atmosphere exhibits the highest electrical conductivity. It is found that the Ga-doping lowers the sinterability but promotes the reduction of Sr0.9Ti0.8−xGaxNb0.2O3. The XRD analysis on the reduced samples suggests that some cations are reduced during the treatment. However, without high temperature pre-reduction, the improvement of Ga-doping is limited and the overall cell performance using Sr0.9Ti0.8−xGaxNb0.2O3 as an anode without catalysts is still relatively low.  相似文献   

14.
In this study, we tried to lower the sintering temperature of Ba0.6Sr0.4TiO3 (BST) ceramics by several kinds of adding methods of Bi2O3, CuO and CuBi2O4 additives. The effects of different adding methods on the microstructures and the dielectric properties of BST ceramics have been studied. In the all additive systems, the single addition of CuBi2O4 was the most effective way for lowering the sintering temperature of BST. When CuBi2O4 of 0.6 mol% was mixed with starting BST powders and sintered at 1100 °C, the derived ceramics demonstrated dense microstructure with a low dielectric constant (? = 4240), low dielectric loss (tan δ = 0.0058), high tunability (Tun = 38.3%) and high Q value (Q = 251). It was noteworthy that the sintering temperature was significantly lowered by 350 °C compared with no-additive system, and the derived ceramics maintained the excellent microwave dielectric properties corresponding to pure BST.  相似文献   

15.
Thermoelectric performances of misfit cobaltites can be controlled by grain orientation and/or by cation substitution. Both processes have been simultaneously performed by directional solidification at 0.03 m/h, using the laser floating zone technique, of Bi2−xPbxSr2Co1.8Oy (with x = 0.0, 0.2, 0.4 and 0.6). The microstructure has shown two different main phases as a function of Pb content, a Co-poor phase for low Pb content (0.0 and 0.2) and a Co-rich one for higher Pb substitution. These microstructural changes are reflected on the thermoelectric properties leading to an important decrease on the resistivity and increase of thermopower for samples with 0.4Pb substitution. Both improvements lead to power factor values higher than usual in textured misfit cobaltites.  相似文献   

16.
The structure, ferroelectric characteristics and piezoelectric properties of (Na0.5Bi0.5)1 − xBaxTiO3 (x = 0.04, 0.06, 0.10) ceramics prepared by conventional solid state method were investigated. The influences of poling condition and sintering temperature on the piezoelectric properties of the ceramics were examined. The piezoelectric properties of the ceramics highly depend on poling field and temperature, while no remarkable effect of poling time on the piezoelectric properties was found in the range of 5-25 min. Compared with (Na0.5Bi0.5)0.96Ba0.04TiO3 and (Na0.5Bi0.5)0.90Ba0.10TiO3, the piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 are more sensitive to poling temperature due to the relatively low depolarization temperature. Moderate increase of sintering temperature improved the poling process and piezoelectric properties due to the development of microstructural densification and crystal structure. With respect to sintering behavior and piezoelectric properties, a sintering temperature range of 1130-1160 °C was ascertained for (Na0.5Bi0.5)0.90Ba0.10TiO3.  相似文献   

17.
The influences of Er content on the dielectric and photoluminescence performances of Bi0.5Na0.5TiO3-xEr (x = 0, 0.005, 0.01, 0.015, 0.02, 0.03) ceramics have been investigated. The results show that Bi0.5Na0.5TiO3-xEr ceramics with x = 0.01 Er have maximum values of photoluminescence and piezoelectric properties. A bright green emission at 550 nm and enhanced piezoelectric response are achieved in the ceramic Bi0.5Na0.5TiO3-0.01Er at room temperature. Furthermore, the photoluminescence performance of the ceramics is significantly enhanced by electric poling.  相似文献   

18.
Lead-free (Na0.65K0.35)NbO3 + wt.% Co2O3 (KNN-xCo) piezoceramics were synthesized by conventional ceramic processing and the effects of low Co2O3 concentration on the microstructure and electrical properties were investigated. The experimental results show that the orthorhombic-tetragonal phase transition temperature (TO-T) decreases slightly whereas the tetragonal-cubic phase transition temperature (TC) and crystal structure keep unchanged with the increasing of Co2O3 content. The doping of Co2O3 facilitates the grain growth and improves the density and piezoelectric properties of the ceramics. The sample of x = 0.2 exhibits good piezoelectric properties of piezoelectric coefficient d33 = 127pC/N and electromechanical coupling coefficient kp = 35.1% with density of ρ = 4.31/cm3. These results strongly suggest that the composition of (Na0.65K0.35)NbO3 is another promising lead-free candidate for investigation besides (Na0.5K0.5)NbO3 system.  相似文献   

19.
Ferroelectric Sr1−xBaxBi2(Nb0.5Ta0.5)2O9 and Sr0.5Ba0.5Bi2(Nb1−yTay)2O9 were synthesized by solid state reaction route. X-ray diffraction studies confirm the formation of single phase layered perovskite solid solutions over a wide range of compositions (x=y=0.0, 0.25, 0.50, 0.75 and 1). The lattice parameters and the Curie temperature (Tc) have been found to have linear dependence on x and y. Transmission electron microscopy (TEM) suggest the lowering of orthorhombic distortion with increasing Ba2+ substitution. Variations in microstructural features as a function of x and y were monitored by scanning electron microscopy (SEM). The dielectric constant at room temperature increases with increase in both x and y. Interestingly Ba2+ substitution on Sr2+ site induces diffused phase transition and diffuseness increases with increasing Ba2+ concentration.  相似文献   

20.
Lead-free (K0.5Na0.5)(Nb1−xTax)O3 ceramics with x = 0.00-0.30 were prepared by the solid-state reaction technique. The effects of Ta on microstructure, crystallographic structure, phase transition and piezoelectric properties have been investigated. It has been shown that the substitution of Ta decreases Curie temperature TC and orthorhombic-tetragonal phase transition temperature TO-T, while increasing the rhombohedral-orthorhombic phase transition temperature TR-O. In addition, piezoelectric activity is enhanced with the increase of Ta content. The ceramics with x = 0.30 have the high value of piezoelectric coefficient d33 = 205 pC/N. Moreover, kp shows little temperature dependence between −75° C and 75 °C, and d33 exhibits very good thermal stability over the range from −196 °C to 75 °C in the aging test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号