首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH-sensitive photocatalytic system was prepared by embedding TiO2 into poly(vinyl alcohol)/poly(acrylic acid) hydrogel. Two different type TiO2/hydrogel composites, such as matrix and nanofiber, were prepared to investigate the morphological effects on the photocatalytic activity. TiO2 was distributed uniformly in the composite hydrogel and kept the original anatase structure without any structural change. The photocatalytic activity of TiO2 was evaluated based on the efficiency of photobleaching of dye. The photobleaching of dye was improved greatly as the pH was changed into basic condition and the larger surface area of hydrogel was available for TiO2 by using nanofiber supports.  相似文献   

2.
Jumi Yun 《Materials Letters》2010,64(22):2431-310
The composite nanofibers of poly(vinyl alcohol)/poly(N,N-dimethylaminopropyl acrylamide) hydrogel and TiO2 were prepared by electrospinning for a novel treatment of acidic waste water. The anatase TiO2 was used as a photocatalyst due to its high photodegradation efficiency. TiO2 was immobilized in the electrospun fibers for an easy recovery of TiO2 after the waste treatment. The hydrogel nanofibers swelled rapidly in the acidic condition due to the repulsion among the protonated amine groups in the polymer chains. High efficiency of photocatalytic decomposition of dye was obtained by the fast swelling of hydrogel in the acidic condition and the uniform dispersion of TiO2 by sonication.  相似文献   

3.
以聚乙烯醇(PVA)、部分中和的丙烯酸(AA)和羟基磷灰石(HA)为原料,过硫酸铵(APS)为引发剂,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法制备了聚乙烯醇/聚丙烯酸/羟基磷灰石(PVA/PAA/HA)复合高吸水树脂。考察了PVA用量对吸水性能的影响,研究了树脂在不同pH值溶液和不同阳离子盐溶液中的溶胀行为。结果表明,引入适量的PVA有利于树脂吸水性能的改善;树脂在pH=4~11较宽的范围内都能保持较高的吸水倍率,在CaCl2溶液中的溶胀动力学行为表现出明显的"过溶胀平衡现象"。  相似文献   

4.
A bifunctional nanocomposite photocatalyst that possesses high photocatalytic activity as well as enhanced adsorption capability was developed. The adsorption component, graphene oxide was synthesized following an improved oxidation method from graphite flakes; while the photoactive component, TiO2 was synthesized by the polymerizable sol–gel route. The as-synthesized graphene oxide was partially photo-reduced, and got anchored as reduced graphene oxide onto TiO2. The materials have been thoroughly characterized with XRD, FT-IR, Raman spectroscopy, TGA, SEM and diffuse reflectance spectroscopy techniques. This reduced-graphene oxide/TiO2 was dispersed over the Zeolite-4A and this nanocomposite hybrid system exhibited remarkable adsorption capability as well as high photocatalytic degradation efficiency for methylene blue.  相似文献   

5.
Thermosensitive poly(N‐isopropylacrylamide) (PNIPAM)/Au nanoparticle (NP) nanocomposite hydrogels are synthesized by in situ γ‐radiation‐assisted polymerization of N‐isopropylacrylamide monomer aqueous solution in the presence of HAuCl4·4H2O. In this reaction, the PNIPAM hydrogels and the Au NPs are formed simultaneously, thus demonstrating an easy and straightforward synthetic strategy for the preparation of a uniform nanocomposite. The results suggest that increasing the monomer content during the preparation of nanocomposite materials can increase the sizes of Au NPs. The effects of irradiation dose and concentration of HAuCl4·4H2O on the optical and thermal properties of the hydrogel are also investigated. The PNIPAM/Au nanocomposite hydrogels act as an excellent catalyst for the conversion of o‐nitroaniline to 1,2‐benzenediamine, and the catalytic activity of the composite hydrogel can be tuned by the volume transition of PNIPAM. The in situ polymerization of monomer and reduction of metal ions initiated by a “clean” and “green” γ‐radiation technique can be extended to the efficient synthesis of other nanocomposite materials.  相似文献   

6.
This body of work describes the development of a porous hydrogel for wound healing applications. In the present study poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) based hydrogels were prepared, and their properties were examined. Varying concentrations of the polymers and distilled water were used to prepare the hydrogels. The use of a high shear mixer, for foaming the PVA and PVA/PAA gels, and how this physical change can affect the structure and porosity of the hydrogel in question, represents a key feature of this work. The mechanical and thermal properties were determined by parallel plate rheometry and modulated differential scanning calorimetry (MDSC) respectively. The results indicated that the hydrogels containing low concentration of PVA and high volume of H2O are significantly weaker than those synthesised with higher concentrations of PVA. The thermal analysis shows distinct endotherms and provides evidence of crystallisation. The chemical structure of the hydrogels was confirmed by means of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).  相似文献   

7.
A facile method is proposed to assemble graphene oxide (GO) on the surface of a TiO2 nanobelt followed by an in situ photocatalytic reduction to form reduced graphene oxide (rGO)/TiO2 nanobelt surface heterostructures. The special colloidal properties of GO and TiO2 nanobelt are exploited as well as the photocatalytic properties of TiO2. Using water–ethanol solvent mixtures, GO nanosheets are tightly wrapped around the surface of the TiO2 nanobelts through an aggregation process and are then reduced in situ under UV‐light irradiation to form rGO/TiO2 nanobelt surface heterostructures. The heterostructures enhance the separation of the photoinduced carriers, which results in a higher photocurrent due to the special electronic characteristics of rGO. Compared to TiO2 nanobelts, the rGO/TiO2 nanobelt surface heterostructures possess higher photocatalytic activity for the degradation of methyl orange and for the production of hydrogen from water, as well as excellent recyclability, with no loss of activity over five cycles.  相似文献   

8.
In this study, graphene was synthesized from graphite. Graphite was oxidized via modified Hummer’s method and sonicated to form graphene oxide (GO). Infrared spectroscopy revealed the successful oxidation of graphite by the emergence of oxygen functionalities. The spectrum of GO showed peaks at 3270, 1629, 1227 and 1096 cm?1, indicating O–H, C=O, C–OH and C–O–C functional groups, respectively. Graphene hydrogels were prepared by the addition of L-ascorbic acid to GO suspensions and subsequent heating at 90°C. Composite hydrogels of graphene and titanium (IV) oxide (TiO2) were synthesized with various TiO2 to GO mass ratios. Composites were applied to photocatalytic hydrogen evolution reaction (HER) and the hydrogen gas produced was analysed by gas chromatography with thermal conductivity detector. Highest HER yield was 66.00% H2.  相似文献   

9.
The photocatalytic performance of heterostructure photocatalysts is limited in practical use due to the charge accumulation at the interface and its low efficiency in utilizing solar energy during photocatalytic process. In this work, a ternary hierarchical TiO2 nanorod arrays/graphene/ZnO nanocomposite is prepared by using graphene sheets as bridge between TiO2 nanorod arrays (NRAs) and ZnO nanoparticles (NPs) via a facile combination of spin-coating and chemical vapor deposition techniques. The experimental study reveals that the graphene sheets provide a barrier-free access to transport photo-excited electrons from rutile TiO2 NRAs and ZnO NPs. In addition, there generates an interface scattering effect of visible light as the graphene sheets provide appreciable nucleation sites for ZnO NPs. This synergistic effect in the ternary nanocomposite gives rise to a largely enhanced photocurrent density and visible light-driven photocatalytic activity, which is 2.6 times higher than that of regular TiO2 NRAs/ZnO NPs heterostructure. It is expected that this hierarchical nanocomposite will be a promising candidate for applications in environmental remediation and energy fields.  相似文献   

10.
Physically crosslinked poly (vinyl alcohol)/poly (acrylic acid) hydrogels were prepared by freeze thaw processing. The hydrogels were formed in, either, water or a water/DMSO mixture and the chemical, mechanical, and thermal properties were determined by FTIR analysis, rotational rheometry and modulated DSC respectively. The results indicate that the hydrogels containing DMSO are significantly stronger than those containing water alone at temperatures between 20 and 40°C. Materials with different characteristics can be created by varying the solvent and the polymer feed ratios. DSC analysis indicated that thermal transitions are present at temperatures that may make these hydrogels useful in temperature sensitive drug delivery systems.  相似文献   

11.
Blown films of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) blends and PVDF/PMMA/TiO2 composites were prepared by melting-extrusion for the first time. The crystalline structure and surface morphology PVDF/PMMA (DFMA) blown films were investigated using differential scanning calorimeter (DSC), atomic force microscope (AFM), and X-ray diffractometry (XRD). PVDF/PMMA/TiO2 blown films were further prepared and underwent surface treatment. The results show that PVDF/PMMA/TiO2 blown films present good mechanical properties, and acrylic acid surface-grafted films exhibit good adhesion capability and long-lasting hydrophilicity, making them attractive as encapsulation materials.  相似文献   

12.
Pd-Pt/graphene-TiO2 nanocomposites were synthesized via a facile ultrasonic and hydrothermal method. For the functionalization of graphene, large area graphene obtained by chemical vapor deposition method was oxidized by 3-chloroperoxybenzoic acid. The functionalized graphene oxide was decorated with TiO2. And then, Pt and Pd nanoparticles were dispersed on graphene surface, simultaneously. The characterizations of “as-prepared” samples were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), Raman, specific surface area (BET) and with energy dispersive X-ray (EDX). The photocatalytic activity of the Pd-Pt/graphene-TiO2 nanocomposite catalyst was evaluated by H2 evolution under UV light. Pd-Pt/graphene-TiO2 (Pd-Pt/G-TiO2) exhibited higher photocatalytic activities than control experimental group samples (TiO2, G-TiO2, Pd/G-TiO2 and Pt/G-TiO2) under UV light irradiation.  相似文献   

13.
We present a straightforward method for simultaneously enhancing the electrical conductivity, environmental stability, and photocatalytic properties of graphene films through one‐step transfer of CVD graphene and integration by introducing TiO2/graphene oxide layer. A highly durable and flexible TiO2 layer is successfully used as a supporting layer for graphene transfer instead of the commonly used PMMA. Transferred graphene/TiO2 film is directly used for measuring the carrier transport and optoelectronic properties without an extra TiO2 removal and following deposition steps for multifunctional integration into devices because the thin TiO2 layer is optically transparent and electrically semiconducting. Moreover, the TiO2 layer induces charge screening by electrostatically interacting with the residual oxygen moieties on graphene, which are charge scattering centers, resulting in a reduced current hysteresis. Adsorption of water and other chemical molecules onto the graphene surface is also prevented by the passivating TiO2 layer, resulting in the long term environmental stability of the graphene under high temperature and humidity. In addition, the graphene/TiO2 film shows effectively enhanced photocatalytic properties because of the increase in the transport efficiency of the photogenerated electrons due to the decrease in the injection barrier formed at the interface between the F‐doped tin oxide and TiO2 layers.  相似文献   

14.
研究了制备聚乙烯醇(PVA)/羟基磷灰石(HA)复合水凝胶的溶胶法原位复合技术,将无机纳米粉体的溶胶-凝胶合成反应引入高分子基体。对该法制备的复合水凝胶的相结构、微观形貌和拉伸强度进行了分析,并与物理共混法复合水凝胶加以比较。结果表明,溶胶法原位复合可以在富水基体中制备晶相的HA粉体,且粉体粒径小于200nm,分散良好,复合材料的力学性能也有进一步改善。  相似文献   

15.
In this study, poly(vinyl alcohol) (PVA)‐graphite oxide and PVA‐graphene oxide (XGO) films were prepared by simple and environmentally friendly method. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscope revealed the strong hydrogen‐bonding interactions between XGO and PVA matrix and the layered structure of tensile fracture surfaces of exfoliated PVA‐XGO films. These resulted in a remarkable improvement on mechanical and barrier properties of XGO/PVA nanocomposite films. The addition of 0.3 and 2.0 wt.% XGO showed an increase in tensile strength (49%) and failure stain (13–22%), in comparison with the neat PVA films. The dramatic improvement of 144% in elastic modulus was observed in PVA/2.0 wt.% XGO. Both O2 and water vapour permeability coefficients of PVA film decreased by about 76% and 21% at an XGO loading of 2.0 wt.%, respectively. Preliminary test was performed to determine the use of nanocomposite films to extend the shelf life of bananas. It was found that bananas packaged in nanocomposite films were ripened slower than those unpackaged or packaged in PVA films. These results demonstrate that such films could dramatically promote the application of PVA‐based films in the packaging industry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrogels fabricated from single polymers have been extensively investigated for wound healing applications. However, in many cases a single polymer cannot meet divergent demands in terms of both properties and performance. In this work, a two phase hydrogel was prepared by physically imbedding a xerogel in the core of a freeze thawed hydrogel. The outer hydrogel was prepared by freeze thawing poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) while the xerogels were prepared by UV polymerisation of 1-vinyl-2-pyrrolidinone (NVP). The rheological results indicated that the two phase hydrogels over a period of 2 weeks formed a strong interface and demonstrated greater physical strength. This suggested that the inner gel containing PVP diffused into the PVA/PAA hydrogel, which in turn increased hydrogen bonding, resulting in the overall increase in the stiffness of the gel. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirmed hydrogen bonding had occurred between the constituents of the two phase hydrogels. Thermal analysis suggested that T g of each of the samples was above 80 °C, which indicated no impact on the behaviour of the gel at body temperature, but did however, give an indication of the stiffness of the dry polymer.  相似文献   

17.
Morphological, structural and photocatalytic properties of graphene oxide (GO)/TiO2 thin-film deposited on quartz substrate were investigated. The TiO2 film was prepared by electron-beam evaporation and the GO film by spin coating method. The photocatalytic activities of the GO/TiO2 film were evaluated by photodecomposition of methylene blue. There was synergistic effect between TiO2 and GO which causes a rapid photo-induced charge separation and the reduction of the recombination of electron-hole pairs under the UV-visible light irradiation. GO on TiO2 film also promotes the properties of adsorption of the dye, photon scattering probability, and interacting surface area. As a result, it leads to the enhancement of the efficiency of the photodegradation in GO/TiO2 film.  相似文献   

18.
In this article, we present a fast and simple method to produce TiO2 nanospheres–graphene nanocomposite with high photocatalytic activity under visible and UV light irradiation. TiO2 nanospheres were adsorbed on graphene in sol–gel process. First, titanium (IV) butoxide underwent hydrolysis in graphene oxide (GO) ethanol solution resulting in TiO2 nanospheres deposition on GO. Next, the material was calcinated to generate the phase transition of TiO2 into anatase and reduce GO to graphene. The detailed characterization of the material was performed via transmission electron microscopy, energy dispersive X-rays spectrometer, Fourier-transformed infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. Interestingly, the band-gap energy of the prepared photocatalyst was drastically decreased in comparison with the commercial photocatalyst P25 from 3.05 to 2.36 eV. This influenced in the activation of the material under visible light and resulted in high photocatalytic activity in the process of phenol decomposition in visible and UV irradiation.  相似文献   

19.
Graphene sheets functionalized noncovalently with aromatic amino acid, tryptophan (Tryp), were prepared by reducing graphene oxide through hydrazine hydrate. Tryp-functionalized graphene is water dispersible and can be stabilized for several months. Atomic force microscopy (AFM), X-ray diffraction (XRD), UV–vis absorption and Raman spectroscopy were used to investigate the nanostructures and the properties of graphene. Application of the graphene dispersion to poly(vinyl alcohol) (PVA) with the help of tryptophan to prepare nanocomposite was also carried out. And the PVA/graphene nanocomposite was characterized by thermogravimetric analysis (TGA) and tensile testing. A 23% improvement in tensile strength and moderate increases in Young’s modulus and thermal stability for PVA were achieved by adding only 0.2 wt% graphene sheets.  相似文献   

20.
《Advanced Powder Technology》2020,31(9):3910-3920
The near-spherical silica nanoparticles with polyvinyl alcohol (denoted as PVA-SiO2) or polyethylene glycol (denoted as PEG-SiO2) as surface modifiers were loaded onto graphene oxide nanosheets (denoted as GO) to prepare PVA(PEG)-SiO2-GO nanocomposites. The nanocomposites well dispersed in water were then compounded with maleic anhydride (MA) - acrylic acid (AA) copolymer (denoted as PMAAA) to prepare new nanocomposite tanning agents (denoted as PVA(PEG)-SiO2-GO/PMAAA). The hydrothermal stability, thickness increase, mechanical properties, flame retardancy and antistatic property, etc. of the leather tanned with PVA(PEG)-SiO2-GO/PMAAA were founded to be improved in a significant way compared with those of the leather tanned with the commercial acrylic resin (CHINATAN OM) and pure PMAAA copolymer tanning agents. The acquired excellent tanning properties may be related to the synergistic tanning effects of near-spherical silica nanoparticles and thin-layered graphene oxide nanosheets in leather tanning process. Especially, the highest shrinkage temperature of the wet-white sheepskin tanned with PVA-SiO2-GO/PMAAA reached 71 C and the thickness increase reached 190% without chrome tanning agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号