首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the impact of the aerodynamic model on the dynamic response of a floating vertical axis wind turbine (VAWT). It compares a state‐of‐the‐art quasi‐steady double multiple streamtube (DMS) solver, a prescribed vortex wake (PVW), and a free vortex wake (FVW) solver. The aerodynamic loads acting on a bottom‐fixed VAWT and computed with the three aerodynamic solvers are compared, then the dynamic responses of the floating turbine in irregular waves and turbulent wind with the different aerodynamic solvers are compared. Differences are observed, particularly in the mean motions of the platform. Eventually, the aerodynamic damping computed by the solvers are estimated with aerodynamic simulations on the turbine with imposed surge and pitch motions. The estimated damping can then be correlated with the dynamic response amplitude of the VAWT. Substantial discrepancies are observed between the three solvers at high tip speed ratio, when the rotor is highly loaded. It is shown that the quasi‐steady DMS solver seems to give greater amplitude of motions for the floating VAWT because of strong rotor/wake interaction that are not correctly accounted for.  相似文献   

2.
An experimental study of the near wake up to four rotor diameters behind a model wind turbine rotor with two different wing tip configurations is performed. A straight‐cut wing tip and a downstream‐facing winglet shape are compared on the same two‐bladed rotor operated at its design tip speed ratio. Phase‐averaged measurements of the velocity vector are synchronized with the rotor position, visualizing the downstream location of tip vortex interaction for the two blade tip configurations. The mean streamwise velocity is found not to be strongly affected by the presence of winglet tip extensions, suggesting an insignificant effect of winglets on the time‐averaged inflow conditions of a possible downstream wind turbine. An analysis of the phase‐averaged vorticity, however, reveals a significantly earlier tip vortex interaction and breakup for the wingletted rotor. In contradistinction, the tip vortices formed behind the reference configuration are assessed to be more stable and start merging into larger turbulent structures significantly further downstream. These results indicate that an optimized winglet design can not only contribute to a higher energy extraction in a rotor's tip region but also can positively affect the wake's mean kinetic energy recovery by stimulating a faster tip vortex interaction.  相似文献   

3.
秦海岩 《风能》2013,16(1):1-17
新年过后的第二个周末,浓重的雾霾已在全国多个城市肆虐,这让人们的心情变得糟糕。数据显示,截至1月13日零时,全国有33个城市的部分监测点PM2.5浓度超过300微克/立方米,个别城市出现PM2.5"爆表",比如北京的PM2.5浓度最高达到950微克/立方米。环保专家称,如此严重的空气质量污染,可以说已近人类所能承受的极限。于是,人们看到了政府有关方面发布的紧急预案,比如通知市民减少户外活动,要求学校停止户外体育锻炼,这体现了政府的责任意识。但我们是满足于制定完美的灾情应对预案,还是谋求从根本上消除灾难?  相似文献   

4.
Understanding the impact of wave-induced dynamic effects on the aerodynamic performance of Offshore Floating Wind Turbines (OFWTs) is crucial towards developing cost-effective floating wind turbines to harness wind energy in deep water sites. The complexity of the wake of an OFWT has not yet been fully understood. Measurements and numerical simulations are essential. An experiment to investigate the aerodynamics of a model OFWT was undertaken at the University of Malta. Established experimental techniques used to analyse fixed HAWTs were applied and modified for the floating turbine condition. The effects of wave induced motions on the rotor aerodynamic variables were analysed in detail. An open source free-wake vortex code was also used to examine whether certain phenomena observed in the experiments could be reproduced numerically by the lifting line method. Results from hot wire measurements and free-wake vortex simulations have shown that for OFWTs surge-induced torque fluctuations are evident. At high λ a discrepancy in the mean CP between the fixed and floating conditions was found from measurements and numerical simulations.  相似文献   

5.
为分析风载荷对漂浮式平台的重要影响,建立了基于单桩式及张力腿平台的漂浮式风力机整机模型,基于叶素-动量理论与辐射/绕射理论,运用水动力软件AQWA并结合有限元方法验证了风载荷及风波耦合的重要性,研究了波浪单独及风波耦合作用下漂浮式平台的时频域动态响应。结果表明:风载荷使平台产生了较大纵荡与垂荡漂移,其产生的倾覆力矩改变了纵摇平衡位置,风载荷使纵荡响应偏离平衡位置较垂荡与纵摇响应明显;对于纵荡响应,风载荷使两平台低频固有频率处的响应峰值增加;对于垂荡响应,风载荷使单桩式平台固有频率处的响应峰值减小,使张力腿平台纵荡-垂荡耦合响应及波浪频率处的响应峰值大幅增加;对于纵摇响应,风载荷使单桩式平台及张力腿平台低频固有频率处的响应峰值大幅增加;风载荷是引起单桩式平台纵荡-垂荡耦合运动的关键因素;波浪载荷是引起张力腿平台纵荡响应幅值较大的关键因素。  相似文献   

6.
As more floating farms are being developed, the wake interaction between multiple floating wind turbines (FWTs) is becoming increasingly relevant. FWTs have long natural periods in certain degrees of freedom, and the large‐scale movement of the wake, known as wake meandering, occurs at very low frequencies. In this study, we use FAST.Farm to simulate a two‐turbine case with three different FWT concepts: a semisubmersible (semi), a spar, and a tension leg platform (TLP), separated by eight rotor diameters in the wind direction. Since wake meandering varies depending on the environmental conditions, three different wind speeds (for all three concepts) as well as two different turbulence levels (for the semi) are considered. For the below‐rated wind speed, when wake meandering was most extreme, yaw motion standard deviations for the downstream semi were approximately 40% greater in high turbulence and over 100% greater in low turbulence when compared with the upstream semi. The low yaw natural frequency (0.01 Hz) of the semi was excited by meandering, while quasi‐static responses resulted in approximately 20% increases in yaw motion standard deviations for the spar and TLP. Differences in fatigue loading between the upstream and downstream turbines for the mooring line tension and tower base fore‐aft bending moment mostly depended on the velocity deficit and were not directly affected by meandering. However, wake meandering did affect fatigue loading related to the tower top yaw moment and the blade root out‐of‐plane moment.  相似文献   

7.
Previous experimental work under controlled conditions on a small scale floating offshore horizontal axis wind turbine has shown an increasing amplitude of the cyclic thrust and power generation against tip speed ratio under the influence of surge motion. A numerical study is performed using an actuator disc Navier Stokes model, a Blade Element Momentum model and a Generalized Dynamic Wake model on the NREL 5 MW reference rotor in order to confirm or reject these observations on a full-scale surging rotor. The hypothesis was confirmed and the underlying reasons for the observed behaviour were studied on the basis of the near wake physics. It was found that the analysis of transient effects such as fatigue cannot be performed without an adequate aerodynamic model of the wake. Characterization of quasi-steady and unsteady regimes may be useful to establish when detailed aerodynamic wake models are necessary.  相似文献   

8.
Over the last decade, several coupled simulation tools have been developed in order to design and optimize floating wind turbines (FWTs). In most of these tools, the aerodynamic modeling is based on quasi‐steady aerodynamic models such as the blade element momentum (BEM). It may not be accurate enough for FWTs as the motion of the platform induces highly unsteady phenomena around the rotor. To address this issue, a new design tool has been developed coupling a seakeeping solver with an unsteady aerodynamic solver based on the free vortex wake (FVW) theory. This tool is here compared with the reference code FAST, which is based on the BEM theory in order to characterize the impact of the aerodynamic model on the seakeeping of a floating horizontal axis wind turbine (HAWT). Aerodynamic solvers are compared for the case of the free floating NREL 5MW HAWT supported by the OC3Hywind SPAR. Differences obtained between the models have been analyzed through a study of the aerodynamic loads acting on the same turbine in imposed harmonic surge and pitch motions. This provides a better understanding of the intrinsic differences between the quasi‐steady and unsteady aerodynamic solvers. The study shows that differences can be observed between the three aerodynamic solvers, especially at high tip speed ratio (TSR) for which unsteady aerodynamic phenomena and complex wake dynamics occur. Observed discrepancies in the predictions of the FWT dynamic response can raise issues when designing such a system with a state‐of‐the‐art design tool.  相似文献   

9.
The performance characteristics and the near wake of a model wind turbine were investigated experimentally. The model tested is a three‐bladed horizontal axis type wind turbine with an upstream rotor of 0.90 m diameter. The performance measurements were conducted at various yaw angles, a freestream speed of about 10 m s ?1, and the tip speed ratio was varied from 0.5 to 12. The time‐averaged streamwise velocity field in the near wake of the turbine was measured at different tip speed ratios and downstream locations. As expected, it was found that power and thrust coefficients decrease with increasing yaw angle. The power loss is about 3% when the yaw angle is less than 10° and increases to more than 30% when the yaw angle is greater than 30°. The velocity distribution in the near wake was found to be strongly influenced by the tip speed ratio and the yaw angle. At the optimum tip speed ratio, the axial velocity was almost uniform within the midsection of the rotor wake, whereas two strong peaks are observed for high tip speed ratios when the yaw angle is 0°. As the yaw angle increases, the wake width was found to be reduced and skewed towards the yawed direction. With increasing downstream distance, the wake velocity field was observed to depend on the tip speed ratio and more pronounced at high tip speed ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
以适用于中等水深(50~200 m)的新型潜式浮式风力机为研究对象,该风力机基础综合Spar式、半潜式及张力腿(TLP)3类浮式风力机基础的优点,运行时基础主体淹没在水下,具有较小的水线面(如同Spar平台),受波浪影响较小;平台通过张紧式系泊线与海床相连(如同TLP平台),具有良好的垂荡和摇摆运动特性;拖航状态下,浮式平台处于半潜状态,水线面面积大(如同半潜式平台),具有良好的浮稳性。通过分析不同波况下的潜式浮式风力机耦合动力响应得到潜式浮式基础的横荡、纵荡、垂荡及纵摇运动响应,以及发电功率、叶片根部弯矩、塔筒顶部和底部弯矩、锚链张力时程曲线。研究结果表明:波浪对于结构的纵摇运动的影响最为明显,对发电功率、叶片根部弯矩和塔筒顶部弯矩影响较小,对塔筒底部弯矩和系泊线张力影响较大。  相似文献   

11.
风波作用下,漂浮式风力机平台的浮动特性会直接影响上部风力机正常运行。为提高平台稳定性,设计一种新型铰接式平台。基于辐射/绕射与有限元方法,结合叶素动量理论,对比分析了风波作用下新平台与立柱式(Spar)平台时频响应特性。结果表明:在纵荡、垂荡及纵摇自由度上,新平台幅值响应算子随波浪频率增大变化趋势与Spar平台基本一致,但峰值明显减小;新平台附加质量较原平台增大,且垂荡自由度上附加质量增加最明显;时域分析中,新平台3个自由度响应幅值较原平台分别减小约83.9%,61.9%及75.5%,标准差减小约76.4%,60%及77.1%,表现出良好的稳定性;功率谱分析中,新平台响应峰值始终小于原平台,且无响应集中现象,波频性能更优。  相似文献   

12.
垂直轴风力机运行过程中,叶片上下表面边界层与剪切层的相互作用使风力机下游尾迹形成周期性涡结构,这种尾迹涡结构对风力机空气动力学特性具有重要影响。基于此,该文采用计算流体力学方法对不同工况下垂直轴风力机尾迹涡结构展开研究,利用快速傅里叶变换与相空间轨迹分析不同尖速比下风力机叶片涡脱落现象和尾迹涡结构,并通过分形维数研究转矩与尾迹流场速度变化。结果表明:风力机尾迹涡结构随尖速比变化呈现不同特征,当尖速比为3.6时,风力机尾迹两侧呈规则性反向脱落涡模态;低尖速比垂直轴风力机尾迹具有明显的混沌特性,且随尖速比的增加混沌特性逐渐减弱;随着尖速比的增加,风力机转矩与下游速度分形维数不断降低,且当尖速比为3.6时,风力机下游速度分形维数仅为1.07。  相似文献   

13.
Yaw misalignment is currently being treated as one of the most promising methods for optimizing the power of wind farms. Therefore, detailed knowledge of the impact of yaw on the wake development is necessary for a range of operating conditions. This study numerically investigates the wake development behind a single yawed wind turbine operating at different tip‐speed ratios and yaw angles using the actuator‐line method in the spectral‐element code Nek5000. It is shown that depending on the tip‐speed ratio, the blade loading varies along the azimuth, resulting in a wake that is asymmetric in both the horizontal and vertical directions. Large tip‐speed ratios as well as large yaw angles are shown to decrease the vertical asymmetry of the yaw‐induced counter‐rotating vortex pair. Both parameters have the effect that they increase the spanwise force induced by yaw relative to the wake rotation. However, while the strength of the counter‐rotating vortex pair in the far wake increases with yaw angle, it is shown to decrease with the tip‐speed ratio. The vertical shift in the wake center is found to be highly dependent on the yaw angle and the tip‐speed ratio. These detailed insights into the yawed wake are important when optimizing potential downstream turbines.  相似文献   

14.
The design of floating wind turbines needs the validation of numerical models against measurements obtained from experiments that accurately represent the system dynamics. This requires solving the conflict in the scaling of the hydrodynamic and aerodynamic forces that arises in tests with wind and waves. To sort out this conflict, we propose a hybrid testing method that uses a ducted fan to replace the rotor and introduce a force representing the aerodynamic thrust. The force is obtained from a simulation of the rotor coupled in real time with the measured platform displacements at the basin. This method is applied on a test campaign of a semisubmersible wind turbine with a scale factor of 1/45. The experimental data are compared with numerical computations using linear and non‐linear hydrodynamic models. Pitch decays in constant wind show a good agreement with computations, demonstrating that the hybrid testing method correctly introduces the aerodynamic damping. Test cases with constant wind and irregular waves show better agreement with the simulations in the power spectral density's (PSD's) low‐frequency region when non‐linear hydrodynamics are computed. In cases with turbulent wind at rated wind speed, the low‐frequency platform motions are dominated by the wind, hiding the differences from hydrodynamic non‐linearities. In these conditions, the agreement between experiments using the proposed hybrid method and computations is good in all the frequency range both for the linear and the non‐linear hydrodynamic models. Conversely, for turbulent winds producing lower rotor thrust, non‐linear hydrodynamics are relevant for the simulation of the low‐frequency system dynamics.  相似文献   

15.
以三叶片水平轴风力机为研究对象,建立了尾迹扩张模型,研究了叶片尾迹流动结构。涡面模型叶片无量纲环量的计算结果与经典环量数据对比,结果吻合较好。计算了根尖涡模型风轮面诱导速度随尾迹扩张系数的变化关系,得出了尖速比对气动性能的影响:推力系数与环量及尖速比成正比;对于不同环量,功率系数存在最佳尖速比。分析了尾迹扩张模型对气动性能的影响:推力系数和功率系数与尾迹扩张系数成正比,尾迹收敛参数对其影响甚微。  相似文献   

16.
Forfloating offshore wind turbines, rotors are under coupled motions of rotating and platform‐induced motions because of hydrodynamics impacts. Notably, the coupled motion of platform pitching and rotor rotating induces unsteadiness and nonlinear aerodynamics in turbine operations; thus having a strong effect on the rotor performances including thrust and power generation. The present work aims at developing a computational fluid dynamics model for simulations of rotor under floating platform induced motions. The rotor motion is realized using arbitrary mesh interface, and wind flows are modelled by incompressible Navier‐Stokes flow solver appended by the k  ? ω shear stress transport turbulence model to resolve turbulence quantities. In order to investigate the fully coupled motion of floating wind turbine, the six degree of freedom solid body motion solver is extended to couple with multiple motions, especially for the motion of rotor coupled with the prescribed surge‐heave‐pitch motion of floating platform. The detailed methodology of multiple motion coupling is also described and discussed in this work. Both steady and unsteady simulations of offshore floating wind turbine are considered in the present work. The steady aerodynamic simulation of offshore floating wind turbine is implemented by the multiple reference frames approach and for the transient simulation, the rotor motion is realized using arbitrary mesh interface. A rigorous benchmark of the present numerical model is performed by comparing to the reported literatures. The detailed elemental thrust and power comparisons of wind turbine are carried out by comparing with the results from FAST developed by National Renewable Energy Laboratory and various existing numerical data with good agreement. The proposed approach is then applied for simulations of National Renewable Energy Laboratory 5MW turbine in coupled platform motion at various wind speeds under a typical load case scenario. Transient effect of flows over turbines rotor is captured with good prediction of turbine performance as compared with existing data from FAST. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
To predict the unsteady aerodynamic loads of horizontal-axis wind turbines (HAWTs) during operations under yawing and pitching conditions, an unsteady numerical simulation method is proposed. This method includes a nonlinear lifting line method to compute the aerodynamic loads on the blades and a time-accurate free-vortex method to simulate the wake. To improve the convergence property in the nonlinear lifting line method, an iterative algorithm based on the Newton–Raphson method is developed. To increase the computational efficiency and the accuracy of the calculation, a new wake vortex model consisting of the vortex core model, the vortex sheet model and the tip vortex model is used. Wind turbines with different diameters, such as NREL Phase VI, the TU Delft model turbine and the Tjæreborg wind turbine, are used to validate the method for rotors operating at given yaw and/or pitch angles and during yawing and/or pitching processes at different wind speeds. The results, including the blade loads, the rotor torque and the locations of the tip vortex cores in the wake, agree well with the measured data and the computed data. It is shown that the proposed method can be used for predictions of unsteady aerodynamic loads and rotor wakes in the operational processes of blade pitching and/or rotor yawing.  相似文献   

18.
S. McTavish  D. Feszty  F. Nitzsche 《风能》2014,17(10):1515-1529
An experiment was conducted to evaluate the initial wake expansion in scaled wind turbine tests as a means to guide future wake interference studies. Five scaled wind turbine rotors with different diameters were designed for testing in a closed‐loop water channel to evaluate the effects of blockage on the initial wake expansion behind a wind turbine. The initial wake expansion was assessed by using quantitative dye visualization to identify the propagation of tip vortices downstream of the rotor. The thrust coefficient developed by the scaled models was recorded using a six‐component balance and was correlated to the downstream wake expansion. The rotors used in the experiment were operated at a tip speed ratio of 6, a Reynolds number based on the tip speed and tip chord of approximately 23,000 and resulted in blockage values that ranged from 6% to 25%. Dye visualization indicated that the initial wake expansion downstream of a rotor was narrowed and that tip vortex pairing behaviour was modified because of increasing blockage. Blockage effects were significant and resulted in a wake that was more than 50% narrower when blockage was 25% compared with the observed expansion with 10% blockage. A computational simulation was conducted with the Generalized Unsteady Vortex Particle (GENUVP) discrete vortex method code using the rotor in freestream conditions and was compared with the experiments. The magnitude of the wake expansion in the freestream computations was similar to the wake expansion in the experiment when blockage was less than 10%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Prediction and control of rotor rotational velocity is critical for accurate aerodynamic loading and generator power predictions. A variable-speed generator-torque controller is combined with the two-phase CFD solver CFDShip-Iowa V4.5. The developed code is utilized in simulations of the 5 MW floating offshore wind turbine (FOWT) conceptualized by the National Renewable Energy Laboratory (NREL) for the Offshore Code Comparison Collaboration (OC3). Fixed platform simulations are first performed to determine baseline rotor velocity and developed torque. A prescribed platform motion simulation is completed to identify effects of platform motion on rotor torque. The OC3’s load case 5.1, with regular wave and steady wind excitation, is performed and results are compared to NREL’s OC3 results. The developed code is shown to functionally control generator speed and torque but requires controller calibration for maximum power extraction. Generator speed variance is observed to be a function of unsteady stream-wise platform motions. The increased mooring forces of the present model are shown to keep the turbine in a more favorable variable-speed control region. Lower overall platform velocity magnitudes and less rotor torque are predicted corresponding to lower rotor rotational velocities and a reduction in generated power. Potential improvements and modifications to the present method are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号