首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The wind turbines within a wind farm impact each other's power production and loads through their wakes. Wake control strategies, aiming to reduce wake effects, receive increasing interest by both the research community and the industry. A number of recent simulation studies with high fidelity wake models indicate that wake mitigation control is a very promising concept for increasing the power production of a wind farm and/or reducing the fatigue loading on wind turbines' components. The purpose of this paper is to study the benefits of wake mitigation control in terms of lifetime power production and fatigue loading on several existing full‐scale commercial wind farms with different scale, layouts, and turbine sizes. For modeling the wake interactions, Energy Research Centre of the Netherlands' FarmFlow software is used: a 3D parabolized Navier‐Stokes code, including a k? turbulence model. In addition, an optimization approach is proposed that maximizes the lifetime power production, thereby incorporating the fatigue loads into the optimization criterion in terms of a lifetime extension factor.  相似文献   

2.
Accurately quantifying wind turbine wakes is a key aspect of wind farm economics in large wind farms. This paper introduces a new simulation post‐processing method to address the wind direction uncertainty present in the measurements of the Horns Rev offshore wind farm. This new technique replaces the traditional simulations performed with the 10 min average wind direction by a weighted average of several simulations covering a wide span of directions. The weights are based on a normal distribution to account for the uncertainty from the yaw misalignment of the reference turbine, the spatial variability of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both applications require accurate wake predictions for narrow wind direction sectors. © 2013 The Authors. Wind Energy published by John Wiley & Sons, Ltd.  相似文献   

3.
The maintenance of wind farms is one of the major factors affecting their profitability. During preventive maintenance, the shutdown of wind turbines causes downtime energy losses. The selection of when and which turbines to maintain can significantly impact the overall downtime energy loss. This paper leverages a wind farm power generation model to calculate downtime energy losses during preventive maintenance for an offshore wind farm. Wake effects are considered to accurately evaluate power output under specific wind conditions. In addition to wind speed and direction, the influence of wake effects is an important factor in selecting time windows for maintenance. To minimize the overall downtime energy loss of an offshore wind farm caused by preventive maintenance, a mixed-integer nonlinear optimization problem is formulated and solved by the genetic algorithm, which can select the optimal maintenance time windows of each turbine. Weather conditions are imposed as constraints to ensure the safety of maintenance personnel and transportation. Using the climatic data of Cape Cod, Massachusetts, the schedule of preventive maintenance is optimized for a simulated utility-scale offshore wind farm. The optimized schedule not only reduces the annual downtime energy loss by selecting the maintenance dates when wind speed is low but also decreases the overall influence of wake effects within the farm. The portion of downtime energy loss reduced due to consideration of wake effects each year is up to approximately 0.2% of the annual wind farm energy generation across the case studies—with other stated opportunities for further profitability improvements.  相似文献   

4.
Wei Tian  Ahmet Ozbay  Hui Hu 《风能》2018,21(2):100-114
An experimental investigation was conducted for a better understanding of the wake interferences among wind turbines sited in wind farms with different turbine layout designs. Two different types of inflows were generated in an atmospheric boundary layer wind tunnel to simulate the different incoming surface winds over typical onshore and offshore wind farms. In addition to quantifying the power outputs and dynamic wind loads acting on the model turbines, the characteristics of the wake flows inside the wind farms were also examined quantitatively. After adding turbines staggered between the first 2 rows of an aligned wind farm to increase the turbine number density in the wind farm, the added staggered turbines did not show a significant effect on the aeromechanical performance of the downstream turbines for the offshore case. However, for the onshore case, while the upstream staggered turbines have a beneficial effect on the power outputs of the downstream turbines, the fatigue loads acting on the downstream turbines were also found to increase considerably due to the wake effects induced by the upstream turbines. With the same turbine number density and same inflow characteristics, the wind turbines were found to be able to generate much more power when they are arranged in a staggered layout than those in an aligned layout. In addition, the characteristics of the dynamic wind loads acting on the wind turbines sited in the aligned layout, including the fluctuation amplitudes and power spectrum, were found to be significantly different from those with staggered layout.  相似文献   

5.
Rolf‐Erik Keck 《风能》2015,18(9):1579-1591
This paper presents validation for using the standalone implementation of the dynamic wake meandering (DWM) model to conduct numerical simulations of power production of rows of wind turbines. The standalone DWM model is an alternative formulation of the conventional DWM model that does not require information exchange with an aeroelastic code. As a consequence, the standalone DWM model has significantly shorter computational times and lower demands on the user environment. The drawback of the standalone DWM model is that it does not have the capability to predict turbine loads. Instead, it should be seen as an alternative for simulating the power production of a wind farm. The main advantage of the standalone DWM model is the ability to capture the key physics for wake dynamics such as the turbine specific induction, the build‐up of wake turbulence and wake deficit in the wind farm, and the effect of ambient turbulence intensity and atmospheric stability. The predicted power production of the standalone DWM model is compared with that of full scale measurements from Horns Rev, Lillgrund, Nysted and Weingermeer wind farms. Overall, the difference between the models predictions and the reference data is on the order of 5%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

8.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Wake losses inside a wind farm occur due to the aerodynamic interactions when a downwind turbine is in the wake of upwind turbines. The ability of floating offshore wind turbines (FOWTs) to relocate their positions in the horizontal plane introduces an opportunity to decrease the wake losses in a floating wind farm (FWF). Our goal is to use this ability to passively move the downwind FOWT out of the wake of upwind ones. Since the mooring system (MS) attached to a FOWT is responsible for its station keeping, the horizontal motions of the FOWT depend on the MS design. Hence, if we can design the MS to passively move the FOWT out of the wake, we can increase the FWF annual energy production (AEP). In this paper, we investigate if we can benefit from relocating FOWTs in a FWF and increase its AEP. In addition, we present a novel approach that considers the ability of a FOWT to relocate its position as a new degree of freedom (DoF) in the FWF layout design. This means we will have a self-adjusting wind farm layout where the FOWTs passively re-arrange themselves depending on the wind direction and the wind speed. Consequently, we will have a slightly different wind farm layout for every wind direction and every wind speed. To achieve this layout, we include the MS design as part of the FWF's layout design. In a self-adjusting FWF layout, each FOWT is attached to a customized MS design allowing it to relocate its position in the best way possible according to the wind direction, to increase the overall AEP of the wind farm. The results of one case study show that the novel approach can increase the FWF's AEP by 1.6% when compared with a current state of the art optimized floating wind farm layout. Finally, we implemented our method as an open-source python tool to be used and enhanced further within the wind energy community.  相似文献   

10.
Wake meandering: a pragmatic approach   总被引:1,自引:0,他引:1  
  相似文献   

11.
This article provides an overview and analysis of different wake‐modelling methods which may be used as prediction and design tools for both wind turbines and wind farms. We also survey the available data concerning the measurement of wind magnitudes in both single wakes and wind farms, and of loading effects on wind turbines under single‐ and multiple‐wake conditions. The relative merits of existing wake and wind farm models and their ability to reproduce experimental results are discussed. Conclusions are provided concerning the usefulness of the different modelling approaches examined, and difficult issues which have not yet been satisfactorily treated and which require further research are discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A wind farm layout optimization framework based on a multi‐fidelity optimization approach is applied to the offshore test case of Middelgrunden, Denmark as well as to the onshore test case of Stag Holt – Coldham wind farm, UK. While aesthetic considerations have heavily influenced the famous curved design of the Middelgrunden wind farm, this work focuses on demonstrating a method that optimizes the profit of wind farms over their lifetime based on a balance of the energy production income, the electrical grid costs, the foundations cost, and the cost of wake turbulence induced fatigue degradation of different wind turbine components. A multi‐fidelity concept is adapted, which uses cost function models of increasing complexity (and decreasing speed) to accelerate the convergence to an optimum solution. In the EU‐FP6 TOPFARM project, three levels of complexity are considered. The first level uses a simple stationary wind farm wake model to estimate the Annual Energy Production (AEP), a foundations cost model depending on the water depth and an electrical grid cost function dictated by cable length. The second level calculates the AEP and adds a wake‐induced fatigue degradation cost function on the basis of the interpolation in a database of simulations performed for various wind speeds and wake setups with the aero‐elastic code HAWC2 and the dynamic wake meandering model. The third level, not considered in this present paper, includes directly the HAWC2 and the dynamic wake meandering model in the optimization loop in order to estimate both the fatigue costs and the AEP. The novelty of this work is the implementation of the multi‐fidelity approach in the context of wind farm optimization, the inclusion of the fatigue degradation costs in the optimization framework, and its application on the optimal performance as seen through an economical perspective. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we conduct a series of large‐eddy simulations (LESs) to study the impact of different incoming turbulent boundary layer flows over large wind farms, with a particular focus on the overall efficiency of electricity production and the evolution of the turbine wake structure. Five representative turbine placements in the large wind farm are considered, including an aligned layout and four staggered layouts with lateral or vertical offset arrangements. Four incoming flow conditions are used and arranged from the LESs of the ABL flow over homogeneous flat surfaces with four different aerodynamic roughness lengths (i.e., z0 = 0.5, 0.1, 0.01, and 0.0001 m), where the hub‐height turbulence intensity levels are about 11.1%, 8.9%, 6.8%, and 4.9%, respectively. The simulation results indicate that an enhancement in the inflow turbulence level can effectively increase the power generation efficiency in the large wind farms, with about 23.3% increment on the overall farm power production and up to about 32.0% increment on the downstream turbine power production. Under the same inflow condition, the change of the turbine‐array layouts can increase power outputs within the first 10 turbine rows, which has a maximum increment of about 26.5% under the inflow condition with low turbulence. By comparison, the increase of the inflow turbulence intensity facilitates faster wake recovery that raises the power generation efficiency of large wind farms than the adjustment of the turbine placing layouts.  相似文献   

14.
A tidal turbine is a device converting hydrodynamic power into electrical power. Lately, more and more projects have been developed in order to optimize the productivity of this kind of energy. In such research with industrial interest, under the impact of the wake effect on the output power, the analysis of a tidal farm layout is regarded as the first priority. Simple approaches such as those developed for wind farms could be used in tidal turbine arrangement optimization. These methodologies can be improved by taking into account the turbulence in tidal farms and tidal turbines' mechanical characteristics. The goal of this work is to propose a predictive analytical model to estimate the tidal speed in the far wake of tidal turbines with small diameter to depth ratio (20% here). It is a first step prior to integrate the wake model in a tidal farm layout optimization algorithm. The wake model development is achieved reanalyzing the far wake's equations used in wind farm applications. A turbine represented by an Actuator Disc (AD) in conjunction with a Computational Fluid Dynamics (CFD) numerical model is used as a reference for this purpose. The CFD-AD model has been validated with experimental results from literature. The novelty of the present work consists in expressing the far wake's radius expansion as a function of the ambient turbulence and the thrust coefficient. The proposed equation is used in conjunction with the Jensen's model in a manner that the velocities downstream a tidal turbine can be estimated. The velocity distribution in the far wake of a single turbine obtained by the proposed model is in good agreement with the CFD numerical model. As a matter of fact, the model provides satisfactory accuracy in the cases of two parks: one with five aligned turbines and one with ten staggered turbines.  相似文献   

15.
主要研究了地形图精度对复杂地区风电场年净发电量和尾流值计算结果的影响,通过对典型风电场应用不同精度的地形图和尾流模型的计算分析,得出地形图精度对于风电场年净发电量和尾流值影响的初步规律,通过计算分析得出如下结论:不同的尾流模型对于地形图精度的敏感度不同,利用PARK尾流模型计算出的风电场年净发电量最大;不同精度的地形图对于复杂风电场年净发电量和尾流值的影响都不大。  相似文献   

16.
以某典型风电场为例,采用尾流模型模拟研究风电机组启停优化对风电机组尾流干涉和发电量的影响。在速度恢复系数小于0.06时,典型机位的停机可增加风电场全场发电量。以中国北方某实际风电场为例进行现场试验,在主风向下,通过调度上游风电机组的启停,实现区域内风电机组发电量提升,验证方法的有效性。  相似文献   

17.
A simple engineering model for predicting wind farm performance is presented, which is applicable to wind farms of arbitrary size and turbine layout. For modeling the interaction of wind farm with the atmospheric boundary layer (ABL), the wind farm is represented as added roughness elements. The wind speed behind each turbine is calculated using a kinematic model, in which the friction velocity and the wind speed outside the turbine wake, constructed based on the wind farm‐ABL interaction model, are employed to estimate the wake expansion rate in the crosswind direction and the maximum wind speed that can be recovered within the turbine wake, respectively. Validation of the model is carried out by comparing the model predictions with the measurements from wind tunnel experiments and the Horns Rev wind farm. For all validation cases, satisfactory agreement is obtained between model predictions and experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In order to study the effect of vertical staggering in large wind farms, large eddy simulations (LES) of large wind farms with a regular turbine layout aligned with the given wind direction were conducted. In the simulations, we varied the hub heights of consecutive downstream rows to create vertically staggered wind farms. We analysed the effect of streamwise and spanwise turbine spacing, the wind farm layout, the turbine rotor diameter, and hub height difference between consecutive downstream turbine rows on the average power output. We find that vertical staggering significantly increases the power production in the entrance region of large wind farms and is more effective when the streamwise turbine spacing and turbine diameter are smaller. Surprisingly, vertical staggering does not significantly improve the power production in the fully developed regime of the wind farm. The reason is that the downward vertical kinetic energy flux, which brings high velocity fluid from above the wind farm towards the hub height plane, does not increase due to vertical staggering. Thus, the shorter wind turbines are effectively sheltered from the atmospheric flow above the wind farm that supplies the energy, which limits the benefit of vertical staggering. In some cases, a vertically staggered wind farm even produced less power than the corresponding non vertically staggered reference wind farm. In such cases, the production of shorter turbines is significantly negatively impacted while the production of the taller turbine is only increased marginally.  相似文献   

19.
A comparison of several incrementally complex methods for predicting wind turbine performance, aeroelastic behavior, and wakes is provided. Depending on a wind farm's design, wake interference can cause large power losses and increased turbulence levels within the farm. The goal is to employ modeling methods to reach an improved understanding of wake effects and to use this information to better optimize the layout of new wind farms. A critical decision faced by modelers is the fidelity of the model that is selected to perform simulations. The choice of model fidelity can affect the accuracy, but will also greatly impact the computational time and resource requirements for simulations. To help address this critical question, three modeling methods of varying fidelity have been developed side by side and are compared in this article. The models from low to high complexity are as follows: a blade element‐based method with a free‐vortex wake, an actuator disc‐based method, and a full rotor‐based method. Fluid/structure interfaces are developed for the aerodynamic modeling approaches that allow modeling of discrete blades and are then coupled with a multibody structural dynamics solver in order to perform an aeroelastic analysis. Similar methods have individually been tested by researchers, but we suggest that by developing a suite of models, they can be cross‐compared to grasp the subtleties of each method. The modeling methods are applied to the National Renewable Energy Laboratory Phase VI rotor to predict the turbine aerodynamic and structural loads and then also the wind velocities in the wake. The full rotor method provides the most accurate predictions at the turbine and the use of adaptive mesh refinement to capture the wake to 20 radii downstream is proven particularly successful. Though the full rotor method is unmatched by the lower fidelity methods in stalled conditions and detailed prediction of the downstream wake, there are other less complex conditions where these methods perform as accurately as the full rotor method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Most wind turbines within wind farms are set up to face a pre-determined wind direction. However, wind directions are intermittent in nature, leading to less electricity production capacity. This paper proposes an algorithm to solve the wind farm layout optimization problem considering multi-angular (MA) wind direction with the aim of maximizing the total power generated on wind farms and minimizing the cost of installation. A two-stage genetic algorithm (GA) equipped with complementary sampling and uniform crossover is used to evolve a MA layout that will yield optimal output regardless of the wind direction. In the first stage, the optimal wind turbine layouts for 8 different major wind directions were determined while the second stage allows each of the previously determined layouts to compete and inter-breed so as to evolve an optimal MA wind farm layout. The proposed MA wind farm layout is thereafter compared to other layouts whose turbines have focused site specific wind turbine orientation. The results reveal that the proposed wind farm layout improves wind power production capacity with minimum cost of installation compared to the layouts with site specific wind turbine layouts. This paper will find application at the planning stage of wind farm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号