首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The power curve of a wind turbine can be measured, according to IEC 61400‐12‐2 with a nacelle‐mounted anemometer. Typically, a sonic anemometer or a cup anemometer and a wind vane are mounted on the back of the nacelle roof. Another option is to use a spinner anemometer. The measurement principle of the spinner anemometer is based on the flow distortion caused by the wind turbine spinner. The flow on the spinner surface is measured by means of three 1D sonic sensors mounted on the spinner and a conversion algorithm to convert the wind velocity components measured by the three sonic sensors to horizontal wind speed, yaw misalignment and flow inclination angle. The algorithm utilizes two calibration constants that are specific to the spinner shape, blade root design and to the mounting positions of the sonic sensors on the spinner. The present analysis describes methods to determine the calibration constant related to wind speed measurements. The first and preferred method is based on the definition of the calibration constant and uses wind speed measurements during the stopped condition of the wind turbine. Two alternative methods that did not require the turbine to be stopped were investigated: one used relatively high wind speed measurements during normal operation of the wind turbine, while the other one used a CFD simulation of the flow over the spinner. The method that entails stopping the turbine in good wind conditions showed the best results and is recommended. The evaluation of uncertainty was not included in the present analysis. Copyright © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd.  相似文献   

2.
A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m rotor diameter, 59 m hub height 2.3 MW wind turbine (Vestas NM80), located at Tjæreborg Enge in western Denmark is presented. Preview wind data at two selected upwind measurement distances, acquired during two measurement periods of different wind speed and atmospheric stability conditions, are analyzed. The lidar‐measured speed, shear and direction of the wind field previewed in front of the turbine are compared with reference measurements from an adjacent met mast and also with the speed and direction measurements on top of the nacelle behind the rotor plane used by the wind turbine itself. Yaw alignment of the wind turbine based on the spinner lidar measurements is compared with wind direction measurements from both the nearby reference met mast and the turbine's own yaw alignment wind vane. Furthermore, the ability to detect vertical wind shear and vertical direction veer in the inflow, through the analysis of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed‐forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady‐state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level. In inflows with high levels of turbulence, the observed blade fatigue load reductions are small, whereas the blade fatigue loads are reduced by 20% at low turbulence levels. For both deterministic and turbulent inflows, it is seen that the blade load reductions are penalized by increased load variations on the non‐rotating turbine parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
为消除风电机组风向标测量误差对偏航控制精度的影响,减少因偏航误差过大造成的发电量损失,提出基于历史运行数据的风向标测量误差校准方法。首先采用改进的DBSCAN聚类算法清洗数据样本,然后通过消除多余影响因素、双调和样条插值及发电性能量化等分析方法辨识出风向标的测量误差,最后根据辨识结果对偏航控制系统零位参数进行修正。现场实验表明,该方法能够有效校准风向标的测量误差、提升机组的发电性能,风向标测量误差大于3°时,校正后风电机组的理论年发电量能够提升1%以上。  相似文献   

5.
When extracting energy from the wind using horizontal axis wind turbines, the ability to align the rotor axis with the mean wind direction is crucial. In previous work, a method for estimating the yaw error based on measurements from a spinner mounted light detection and ranging (LIDAR) device was developed and tested. In this study, the simulation parameter space is extended to include higher levels of turbulence intensity. Furthermore, the method is applied to experimental data and compared with met‐mast data corrected for a calibration error that was not discovered during previous work. Finally, the shortcomings of using a spinner mounted LIDAR for yaw error estimation are discussed. The extended simulation study shows that with the applied method, the yaw error can be estimated with a precision of a few degrees, even in highly turbulent flows. Applying the method to experimental data reveals an average yaw error of approximately 9° during a period of 2 h, and good correlation is seen between LIDAR‐based estimates and met‐mast data. The final discussion suggests a number of challenges of the method when applied to measurements in complex flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
One of the primary criteria for extracting energy from the wind using horizontal axis upwind wind turbines is the ability to align the rotor axis with the dominating wind direction. The conventional way of estimating the direction of the incoming flow is by using transducers placed atop the nacelle and downwind of the rotor. Recent studies have suggested methods based on advanced upwind measurement technologies for estimating the inflow direction and improving the yaw alignment. In this study, the potential of increased power output with improved yaw alignment is investigated by assessing the performance of a current measurement and yaw control system. The performance is assessed by analyzing data containing upwind wind speed and direction measurements from a met mast, and yaw angle and power production measurements from an operating offshore wind turbine. The results of the analysis indicate that the turbine is operating with a wind speed‐dependent yaw error distribution. The theoretical annual energy production loss due to the yaw error distribution of the existing system is estimated to approximately 0.2%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This article deals with the influence of yawed inflow conditions on the performance of a single generic 2.4MW wind turbine. It presents the results of studies performed at the Institute of Aerodynamics and Gas Dynamics by means of computational fluid dynamics , using a fully meshed wind turbine with all boundary layers being resolved. The block‐structured flow solver FLOWer is used; a dual‐time stepping method for temporal discretization and a second‐order Jameson–Schmidt–Turkel method for the calculation of the convective fluxes are applied. All simulations are carried out using a detached eddy simulation approach. In detail, two different wind speeds and a yaw angle range between ?50° and +50° are evaluated in the paper. Based on these data, it is shown that the reduction of power output follows a cosine to the power of X function of the yaw angle. Furthermore, the growing azimuthal non‐uniformity of the load distributions with increasing yaw angle magnitude is analysed by spanwise load distributions. As a central influence on the load distributions, the advancing and retreating blade effect is identified. Moreover, the deflection of the wake as a result of the inflow is investigated, and the deflection angles are compared with a modelling approach. A connection line between wake deflection and load asymmetry is drawn. The results are of particular importance for wind park situations with downstream turbines facing the distorted inflow created from upstream ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring Network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16 m s?1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23 m s?1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Field‐scale and wind tunnel experiments were conducted in the 2D to 6D turbine wake region to investigate the effect of geometric and Reynolds number scaling on wake meandering. Five field deployments took place: 4 in the wake of a single 2.5‐MW wind turbine and 1 at a wind farm with numerous 2‐MW turbines. The experiments occurred under near‐neutral thermal conditions. Ground‐based lidar was used to measure wake velocities, and a vertical array of met‐mounted sonic anemometers were used to characterize inflow conditions. Laboratory tests were conducted in an atmospheric boundary layer wind tunnel for comparison with the field results. Treatment of the low‐resolution lidar measurements is discussed, including an empirical correction to velocity spectra using colocated lidar and sonic anemometer. Spectral analysis on the laboratory‐ and utility‐scale measurements confirms a meandering frequency that scales with the Strouhal number St = fD/U based on the turbine rotor diameter D. The scaling indicates the importance of the rotor‐scaled annular shear layer to the dynamics of meandering at the field scale, which is consistent with findings of previous wind tunnel and computational studies. The field and tunnel spectra also reveal a deficit in large‐scale turbulent energy, signaling a sheltering effect of the turbine, which blocks or deflects the largest flow scales of the incoming flow. Two different mechanisms for wake meandering—large scales of the incoming flow and shear instabilities at relatively smaller scales—are discussed and inferred to be related to the turbulent kinetic energy excess and deficit observed in the wake velocity spectra.  相似文献   

10.
为了增强风电机组偏航系统自适应水平,提升风能利用率,提出一种基于K近邻聚类(KNN)算法风电机组偏航控制参数优化方法。为准确描述风向变化,建立改进Weibull概率分布建立风向评估模型,即以风向波动的幅值(A)和波动持续时间(T)作为风况的数据标签来描述风向。对比风电机组不同偏航参数下的运行数据确定聚类中心(已知风况下的最佳偏航参数),通过基于KNN算法的风电机组偏航控制参数优化模型,得到不同风况下风电机组最佳的偏航参数。通过对风电机组运行数据进行算例分析表明,该方法高风速时可提升风电机组发电效率,并在低风速时减少偏航启动次数。  相似文献   

11.
以风电机组机载风速仪为例,提出一种传感器状态自确认方法。利用多台风电机组风速的相关性,通过动态时间规整算法,选定一组风电机组群。构建基于自联想神经网络的风电机组群风速仪预测模型,采用历史正常数据通过麻雀搜寻优化算法对模型进行训练,根据实际值与预测值的关系对风速仪状态进行识别。通过仿真实验证明该方法可识别风速仪模拟异常状态,最后对某风场实际风速进行检测,结果显示能有效识别出风速仪的状态,实现风电机组风速仪状态的自确认。  相似文献   

12.
The yaw angle control of a wind turbine allows maximization of the power absorbed from the wind and, thus, the increment of the system efficiency. Conventionally, classical control algorithms have been used for the yaw angle control of wind turbines. Nevertheless, in recent years, advanced control strategies have been designed and implemented for this purpose. These advanced control strategies are considered to offer improved features in comparison to classical algorithms. In this paper, an advanced yaw control strategy based on reinforcement learning (RL) is designed and verified in simulation environment. The proposed RL algorithm considers multivariable states and actions, as well as the mechanical loads due to the yaw rotation of the wind turbine nacelle and rotor. Furthermore, a particle swarm optimization (PSO) and Pareto optimal front (PoF)‐based algorithm have been developed in order to find the optimal actions that satisfy the compromise between the power gain and the mechanical loads due to the yaw rotation. Maximizing the power generation and minimizing the mechanical loads in the yaw bearings in an automatic way are the objectives of the proposed RL algorithm. The data of the matrices Q (s,a) of the RL algorithm are stored as continuous functions in an artificial neural network (ANN) avoiding any quantification problem. The NREL 5‐MW reference wind turbine has been considered for the analysis, and real wind data from Salt Lake, Utah, have been used for the validation of the designed yaw control strategy via simulations with the aeroelastic code FAST.  相似文献   

13.
T. F. Pedersen 《风能》2004,7(3):163-176
The average airflow inclination in complex terrain may be substantial. The airflow inclination affects wind turbine performance and also affects the cup anemometer being used in power performance measurements. In this article the overall dependence of the power curve on inclined airflow is analysed for its influence on both the wind turbine and the cup anemometer. The wind turbine performance analysis is based on results of measurements and theoretical calculations with the aeroelastic code HAWC coupled to a 3D actuator disc model for varying yaw angle. The cup anemometer analysis at inclined flow is based on an averaging of measured angular characteristics in a wind tunnel with the distribution of airflow inclination angles over time. The relative difference in annual energy production in terrain with inclined airflow compared with flat terrain is simulated for cup anemometers with theoretical optimal angular characteristics for two different definitions of wind speed, as well as for five commercial cup anemometers with measured angular characteristics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Torque associated with rotor stall is shown to be an important factor in the yaw behaviour of fixed pitch horizontal axis wind turbines (HAWT). For a given operating machine, the best performance occurs when the plane of rotation is perpendicular to the wind velocity for all wind speeds, V, less than a fixed value, V0. For V > V0 a velocity dependent torque yaws a free rotor to more efficient energy gathering positions provided the yaw torque exceeds the corresponding machine frictional torque. The optimum angular positions (yaw trajectories) computed from dynamic equilibrium considerations are compared with, and shown to be in satisfactory agreement with, solutions furnished by a model based on a postulated energy gathering function. The postulational approach developed is particularly useful because of its generality and simplicity in describing the performance of a HAWT. It is noted that although it is advantageous from a performance point of view to yaw the rotor to the optimum position corresponding to a given wind velocity established by either dynamic equilibrium or the energy gathering model, one must be aware of the accompanying increase in cyclic loading. On the other hand, maintaining the plane of rotation perpendicular to the wind velocity at all times could result in significant performance losses as well as fatigue problems in fixed pitch rotors, especially during stall conditions.  相似文献   

15.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Yaw misalignment is currently being treated as one of the most promising methods for optimizing the power of wind farms. Therefore, detailed knowledge of the impact of yaw on the wake development is necessary for a range of operating conditions. This study numerically investigates the wake development behind a single yawed wind turbine operating at different tip‐speed ratios and yaw angles using the actuator‐line method in the spectral‐element code Nek5000. It is shown that depending on the tip‐speed ratio, the blade loading varies along the azimuth, resulting in a wake that is asymmetric in both the horizontal and vertical directions. Large tip‐speed ratios as well as large yaw angles are shown to decrease the vertical asymmetry of the yaw‐induced counter‐rotating vortex pair. Both parameters have the effect that they increase the spanwise force induced by yaw relative to the wake rotation. However, while the strength of the counter‐rotating vortex pair in the far wake increases with yaw angle, it is shown to decrease with the tip‐speed ratio. The vertical shift in the wake center is found to be highly dependent on the yaw angle and the tip‐speed ratio. These detailed insights into the yawed wake are important when optimizing potential downstream turbines.  相似文献   

17.
通过实验测试,以动态旋转平台模拟风力机风向变化及偏航对风,研究不同偏航速度及偏航延时时间对风力机叶片应力及功率的影响。结果表明:动态偏航对风过程中,应力值基本呈由前缘向后缘、叶根向叶尖递减的趋势,在叶展方向0.67R及0.75R处,叶根弦向方向0.25c及0.50c处出现应力集中现象,偏航延时时间的加入可有效抑制叶片应力波动,过慢的偏航速度会导致功率曲线出现较大波动。引入一无量纲系数,该系数为风力机功率及叶片应力的比值,通过分析得知在仅考虑风力机叶片应力及功率时,风力机最佳偏航速度为0.5°/s。  相似文献   

18.
Nacelle lidars are attractive for offshore measurements since they can provide measurements of the free wind speed in front of the turbine rotor without erecting a met mast, which significantly reduces the cost of the measurements. Nacelle‐mounted pulsed lidars with two lines of sight (LOS) have already been demonstrated to be suitable for use in power performance measurements. To be considered as a professional tool, however, power curve measurements performed using these instruments require traceable calibrated measurements and the quantification of the wind speed measurement uncertainty. Here we present and demonstrate a procedure fulfilling these needs. A nacelle lidar went through a comprehensive calibration procedure. This calibration took place in two stages. First with the lidar on the ground, the tilt and roll readings of the inclinometers in the nacelle lidar were calibrated. Then the lidar was installed on a 9m high platform in order to calibrate the wind speed measurement. The lidar's radial wind speed measurement along each LOS was compared with the wind speed measured by a calibrated cup anemometer, projected along the LOS direction. The various sources of uncertainty in the lidar wind speed measurement have been thoroughly determined: uncertainty of the reference anemometer, the horizontal and vertical positioning of the beam, the lack of homogeneity of the flow within the probe volume, lidar measurement mean deviation and standard uncertainty. The resulting uncertainty lies between 1 and 2% for the wind speed range between cut‐in and rated wind speed. Finally, the lidar was mounted on the nacelle of a wind turbine in order to perform a power curve measurement. The wind speed was simultaneously measured with a mast‐top mounted cup anemometer placed two rotor diameters upwind of the turbine. The wind speed uncertainty related to the lidar tilting was calculated based on the tilt angle uncertainty derived from the inclinometer calibration and the deviation of the measurement height from hub height. The resulting combined uncertainty in the power curve using the nacelle lidar was less than 10% larger on average than that obtained with the mast mounted cup anemometer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The performance characteristics and the near wake of a model wind turbine were investigated experimentally. The model tested is a three‐bladed horizontal axis type wind turbine with an upstream rotor of 0.90 m diameter. The performance measurements were conducted at various yaw angles, a freestream speed of about 10 m s ?1, and the tip speed ratio was varied from 0.5 to 12. The time‐averaged streamwise velocity field in the near wake of the turbine was measured at different tip speed ratios and downstream locations. As expected, it was found that power and thrust coefficients decrease with increasing yaw angle. The power loss is about 3% when the yaw angle is less than 10° and increases to more than 30% when the yaw angle is greater than 30°. The velocity distribution in the near wake was found to be strongly influenced by the tip speed ratio and the yaw angle. At the optimum tip speed ratio, the axial velocity was almost uniform within the midsection of the rotor wake, whereas two strong peaks are observed for high tip speed ratios when the yaw angle is 0°. As the yaw angle increases, the wake width was found to be reduced and skewed towards the yawed direction. With increasing downstream distance, the wake velocity field was observed to depend on the tip speed ratio and more pronounced at high tip speed ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This study examines the wake of a porous disk that generates a velocity deficit equivalent to that of a wind turbine. Three-dimensional unsteady numerical simulations based on the finite volume method are performed. The URANS-SST (kω) model is applied for the turbulence closure. Two investigations are carried out in this study: (i) the influence of the disk porosity on the wake, for porosities values (p) ranging from 0 to 0.55 in the case of a perpendicular flow; and (ii) the influence of the yaw angle on the wake deviation, for yaw angles ranging from 5° to 30°. Good agreements with the available experimental data are obtained for the mean x-velocity component. The results confirm that wake length increases as porosity decreases. For nonporous disks, most part of the fluid is deflected toward the mast and above the disk. The y-velocity contours highlight two contra-rotating vortices in the vicinity of the disk. In both cases (nonporous and porous disks), a high turbulent kinetic energy is obtained near the disk area, with a higher maximum value for the nonporous disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号