首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TCP Window Control for Variable Bandwidth in Wireless Cellular Networks   总被引:1,自引:0,他引:1  
Most of TCP schemes in wireless networks assume that the bandwidth of the bottleneck link remains constant over time. However, in wireless cellular networks, to effectively manage the limited resources, the bandwidth is controlled based on radio condition over time. Such varying bandwidth can cause the networks congestion or underutilization. In this letter, we propose a new window control algorithm to improve TCP performance in wireless cellular networks with variable bandwidth. Simulation results illustrate that our proposal improves the performance of TCP in terms of fairness and link utilization  相似文献   

2.
Wireless mesh networks (WMNs) extend the limited transmission coverage of wireless LANs by enabling users to connect to the Internet via a multi-hop relay service provided by wireless mesh routers. In such networks the quality of experience (QoE) depends on both the user location relative to the Internet gateway and the traffic load. Various channel access or queue management schemes have been proposed for achieving throughput fairness among WMN users. However, delay and bandwidth utilization efficiency of such schemes may be unacceptable for real-time applications. Accordingly, the present study proposes a proportional bandwidth allocation scheme with a delay constraint consideration for enhancing the QoE of users of WMNs based on the IEEE 802.11e standard. An analytical model of the proposed scheme is provided. Moreover, the performance of the proposed scheme is systematically compared with that of existing bandwidth allocation methods. The simulation results show that the proposed scheme outperforms previously proposed schemes in terms of both an improved throughput fairness among the WMN users and a smaller end-to-end transmission delay.  相似文献   

3.
王建新  荣亮 《电子学报》2007,35(11):2105-2110
几乎现有的AQM算法都忽略了大时滞对网络拥塞控制系统稳定性的负面影响,以致稳定性、响应性和鲁棒性在大时滞网络中大大降低.如PI、REM等AQM算法在大时滞环境下表现出剧烈的队列震荡和频繁的空队列情况,这些现象直接导致了链路利用率的低下和延时抖动的增大.而面向大时滞网络拥塞控制的DC-AQM算法不够恰当的参数配置使得系统输出偏离了控制的目标,出现了很高的分组丢弃概率.为解决大时滞网络拥塞控制的稳定性问题,本文基于内模控制原理,提出一种新的鲁棒AQM控制器IMC-PID来补偿网络时滞对系统稳定性的影响.仿真分析表明,随着网络时滞的增大,IMC-PID在综合性能上胜过其他算法,获得了较高的链路利用率和较低的延时抖动.  相似文献   

4.
Hop-by-Hop Congestion Control Over a Wireless Multi-Hop Network   总被引:5,自引:0,他引:5  
This paper focuses on congestion control over multi-hop, wireless networks. In a wireless network, an important constraint that arises is that due to the MAC (Media Access Control) layer. Many wireless MACs use a time-division strategy for channel access, where, at any point in space, the physical channel can be accessed by a single user at each instant of time. In this paper, we develop a fair hop-by-hop congestion control algorithm with the MAC constraint being imposed in the form of a channel access time constraint, using an optimization-based framework. In the absence of delay, we show that this algorithm are globally stable using a Lyapunov-function-based approach. Next, in the presence of delay, we show that the hop-by-hop control algorithm has the property of spatial spreading. In other words, focused loads at a particular spatial location in the network get "smoothed" over space. We derive bounds on the "peak load" at a node, both with hop-by-hop control, as well as with end-to-end control, show that significant gains are to be had with the hop-by-hop scheme, and validate the analytical results with simulation  相似文献   

5.
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communi-cating nodes. In this paper, we present a state-based channel capacity perception scheme to provide sta-tistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wire-less multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capaci-ty, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a net-work resource and forwards the data packet by tak-ing into consideration the channel capacity deploy-ments in multi-terminal or multi-hop mesh net-works. Extensive computer simulations demonstrate that the proposed scheme can achieve better per-formance in terms of packet delivery ratio and net-work throughput compared to the existing capacity prediction schemes.  相似文献   

6.
In recent time, a great deal of research effort has been directed toward promptly facilitating post-disaster communication by using wireless mesh networks (WMNs). WMN technology has been considered to be effectively exploited for this purpose as it provides multi-hop communication through an access network comprising wireless mesh routers, which are connected to the Internet through gateways (GWs). One of the critical challenges in using WMNs for establishing disaster-recovery networks is the issue of distributing traffic among the users in a balanced manner in order to avoid congestion at the GWs. To overcome this issue, we envision a disaster zone WMN comprising a network management center. First, we thoroughly investigate the problem of traffic load balancing amongst the GWs in our considered disaster zone WMN. Then, we develop traffic load distribution techniques from two perspectives. Our proposal from the first perspective hinges upon a balanced distribution of the bandwidth to be allocated per user. On the other hand, our second perspective considers the dynamic (i.e., varying) bandwidth demands from the disaster zone users that requires a more practical and refined distribution of the available bandwidth by following an intelligent forecasting method. The effectiveness of our proposals is evaluated through computer-based simulations.  相似文献   

7.
Balanced fairness is a new resource sharing concept recently introduced by Bonald and Proutière. We extend the use of this notion to wireless multi-hop networks, e.g. ad hoc networks, where the link capacities at the flow level are not fixed but depend on lower layer issues such as scheduling and interference. Utilizing this extension we present the theoretical framework for flow level performance analysis of elastic traffic in the setting, assuming that the wireless bandwidth resources are subject to linear constraints. We discuss how different physical and access layer configurations can be described by the linear constraint model and devise an efficient computational scheme for solving the system. The concepts and the computational scheme are illustrated by a number of examples.  相似文献   

8.
This paper proposes a new congestion control scheme of mobile Stream Control Transmission Protocol (mSCTP) for vertical handover across heterogeneous wireless/mobile networks. The proposed scheme is based on the estimation of available bandwidths in the underlying network as a cross-layer optimization approach. For congestion control of mSCTP, the initial congestion window size of the new primary path is adaptively configured, depending on the available bandwidth of the new link that a mobile node moves into. By ns-2 simulation, the proposed scheme is compared with the existing congestion control schemes in the throughput perspective. From the numerical results, we can see that the proposed mSCTP congestion control scheme could give better performance than the existing schemes in the wireless networks with an amount of background traffic.  相似文献   

9.
The ever increasing presence of services over wireless networks utilizing large bandwidth necessitates the constant quest for developing efficient and dependable services, capable of providing support to a wide and variety of applications. Wireless mesh networks can provide such reliable and scalable solutions addressing the requirements of the services utilizing large bandwidth. The current focus is on the interesting and challenging issue of channel access for different services with assured bandwidth guarantees. The problem of bandwidth, constantly encountered by the wireless mesh networks, is studied in this paper with due thrust on the issues pertaining to congestion control mechanisms. A novel ant colony‐based approach called ant‐inspired level‐based congestion control (AILCC) is developed in order to effectively manage the issues of bandwidth. The versatility of the AILCC includes its capacity for service differentiation in addressing a range of requests, such as applications of real‐time and nonreal‐time. The primary focus of AILCC is on providing an efficient congestion control mechanism that can meet numerous bandwidth demands of various applications. The performance of AILCC in terms of the ratio of packet delivery and end‐to‐end delay is evaluated through relevant simulations. The results obtained demonstrate greater levels of performance of AILCC over the other methods in existence. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Rate control is an important issue in video streaming applications. The most popular rate control scheme over wired networks is TCP-Friendly Rate Control (TFRC), which is designed to provide optimal transport service for unicast multimedia delivery based on the TCP Reno’s throughput equation. It assumes perfect link quality, treating network congestion as the only reason for packet losses. Therefore, when used in wireless environment, it suffers significant performance degradation because of packet losses arising from time-varying link quality. Most current research focuses on enhancing the TFRC protocol itself, ignoring the tightly coupled relation between the transport layer and other network layers. In this paper, we propose a new approach to address this problem, integrating TFRC with the application layer and the physical layer to form a holistic design for real-time video streaming over wireless multi-hop networks. The proposed approach can achieve the best user-perceived video quality by jointly optimizing system parameters residing in different network layers, including real-time video coding parameters at the application layer, packet sending rate at the transport layer, and modulation and coding scheme at the physical layer. The problem is formulated and solved as to find the optimal combination of parameters to minimize the end-to-end expected video distortion constrained by a given video playback delay, or to minimize the video playback delay constrained by a given end-to-end video distortion. Experimental results have validated 2–4 dB PSNR performance gain of the proposed approach in wireless multi-hop networks by using H.264/AVC and NS-2.  相似文献   

11.
This paper investigates fair, scalable, stable congestion controls which achieve high bandwidth utilization over networks operating multi-path routing. It aims to take advantage of path diversity to achieve efficient bandwidth allocation without causing instability. We develop a multi-path extension to the dual algorithm, which takes into consideration path diversity when evaluating fairness. This algorithm is shown to be globally stable in the absence of propagation delays and a sufficient condition for local stability, for the case when heterogeneous propagation delays are present, is found. The sufficient condition we present is decentralized in the following sense: the gain parameter for each dynamic variable is restricted by the average round-trip time of packets passing through the link or source it represents, but not by the round-trip times of any other packets. This leads to a highly scalable parameter choice scheme. Gain parameters are calculated from local information which is independent of the state of the algorithm, and our delay stability condition is satisfied. The models considered apply to networks consisting of arbitrary interconnections of sources and links with arbitrary heterogeneous propagation delays.  相似文献   

12.
Cross-layer congestion control in ad hoc wireless networks   总被引:2,自引:0,他引:2  
Dzmitry  Fabrizio   《Ad hoc Networks》2006,4(6):687-708
The paper presents the problem of performance degradation of transport layer protocols due to congestion of wireless local area networks. Following the analysis of available solutions to this problem, a cross-layer congestion avoidance scheme (C3TCP) is presented, able to obtain higher performance by gathering capacity information such as bandwidth and delay at the link layer. The method requires the introduction of an additional module within the protocol stack of the mobile node, able to adjust the outgoing data stream based on capacity measurements. Moreover, a proposal to provide optional field support to existing IEEE 802.11 protocol, in order to support the presented congestion control solution as well as many other similar approaches, is presented. Achieved results underline good agreement with design considerations and high utilization of the available resources.  相似文献   

13.
This paper focuses on the design and implementation of CLASS, a Cross-Layer Association scheme for IEEE 802.11-based multi-hop wireless mesh networks. The widely-used association strategy in traditional IEEE 802.11 wireless LANs allows a Mobile Station (MS) to scan wireless access links and then associate with the Access Point (AP) that has the best Received Signal Strength Indication (RSSI) value. Unlike traditional wireless LANs, IEEE 802.11-based wireless mesh networks consist of a multi-hop wireless backhaul. As such, the performance experienced by an MS after association with a specific Mesh Access Point (MAP) depends heavily on the conditions of both the access link (e.g., traffic load of associated stations, the frame error rate between an MS and an MAP) and the mesh backhaul (e.g., end-to-end latency and asymmetric uplink/downlink transportation costs). That is, selecting the MAP that yields the “best” performance depends on several factors and cannot be determined solely on the RSSI of the MS-MAP access link. CLASS uses an end-to-end airtime cost metric to determine the MAP to which an MS should associate. The airtime cost metric is based on the IEEE 802.11s, and comprises the access link airtime cost and the backhaul airtime cost. The proposed association scheme considers the frame error rate for various packet sizes, the available bandwidth on the access link after the association of the new MS, and the asymmetric uplink and downlink transportation costs on the backhaul. All experimental results are based on actual Linux-base testbed implementation. We also implement a general Cross-Layer Service Middleware (CLSM) module that is used to monitor network conditions and gather relevant metrics and factor values. Experimental results show that the proposed association scheme is able to identify the MAP which yields the highest end-to-end network performance for the mobile stations after their associations.  相似文献   

14.
In this paper, we propose a multi-hop auction-based bandwidth allocation mechanism to address the flow contention problem in wireless ad hoc networks. By modeling the problem as an iterative auction-based structure, it enables us to derive fair and efficient bandwidth allocation to each node on the basis of only local information. Further, a multi-hop flow coordination mechanism is then developed to optimize the network performance. Simulation results suggest that the proposed mechanism outperforms other approaches in terms of network throughput, bandwidth utilization, fairness, end-to-end delay, packet loss rate, and robustness.  相似文献   

15.
Although the bandwidth of access networks is rapidly increasing with the latest techniques such as DSL and FTTH, the access link bandwidth remains a bottleneck, especially when users activate multiple network applications simultaneously. Furthermore, since the throughput of a standard TCP connection is dependent on various network parameters, including round‐trip time and packet loss ratio, the access link bandwidth is not shared among the network applications according to the user's demands. In this thesis, we present a new management scheme of access link resources for effective utilization of the access link bandwidth and control of the TCP connection's throughput. Our proposed scheme adjusts the total amount of the receive socket buffer assigned to TCP connections to avoid congestion at the access network, and assigns it to each TCP connection according to characteristics in consideration of QoS. The control objectives of our scheme are (1) to protect short‐lived TCP connections from the bandwidth occupation by long‐lived TCP connections, and (2) to differentiate the throughput of the long‐lived TCP connections according to the upper‐layer application's demands. One of the results obtained from the simulation experiments is that our proposed scheme can reduce the delay of short‐lived document transfer perceived by the receiver host by up to about 90%, while a high utilization of access link bandwidth is maintained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In multi-hop ad hoc networks, besides collision-free transmissions, channel utilization should be also enhanced due to the scarce bandwidth. In this paper, we propose a learning automat-based adaptive polling scheme for medium access scheduling in clustered wireless ad-hoc networks to enhance the channel utilization. In this scheme, each cluster-head takes the responsibility of coordinating intra-cluster transmissions so that no collisions occur. Taking advantage of learning automaton, each cluster-head learns the traffic parameters of its own cluster members. Cluster members are prioritized based on these traffic parameters. Each cluster-head then takes the traffic parameters into consideration for finding an optimal channel access scheduling within its cluster. By the proposed polling scheme, each cluster member is assigned a portion of bandwidth proportional to its need (i.e., traffic load). The results show that the proposed channel assignment policy considerably improves the channel utilization. Simulation experiments also show the superiority of the proposed polling-based medium access scheme over the existing methods in terms of channel utilization, waiting time for packet transmission, and control overhead.  相似文献   

17.
对于无线多跳网络跨层资源分配算法的研究大多是建立在假定每个节点能获得网络中其他节点的完美的信道状态信息(CSI)的基础上。但是由于信道的时变特性和CSI的反馈延时,在动态变化较快的无线网络中,节点所获得的CSI很可能是过时或者部分过时的。基于这个前提,该文首次在动态无线多跳网络跨层资源优化分配算法中考虑了CSI这种变化的影响,并提出了一种相应的分布式联合拥塞控制和功率分配算法。仿真结果证明该算法能够极大地提高网络效用和能量效用。  相似文献   

18.
This paper investigates how to support multicasting in wireless ad hoc networks without throttling the dominant unicast flows. Unicast flows are usually congestion-controlled with protocols like TCP. However, there are no such protocols for multicast flows in wireless ad hoc networks and multicast flows can therefore cause severe congestion and throttle TCP-like flows in these environments. Based on a cross-layer approach, this paper proposes a completely-localized scheme to prevent multicast flows from causing severe congestion and the associated deleterious effects on other flows in wireless ad hoc networks. The proposed scheme combines the layered multicast concept with the routing-based congestion avoidance idea to reduce the aggregated rate of multicast flows when they use excessive bandwidth on a wireless link. Our analysis and extensive simulations show that the fully-localized scheme proposed in this paper is effective in ensuring the fairness of bandwidth sharing between multicast and unicast flows in wireless ad hoc networks.  相似文献   

19.
Flow admission control for multi-channel multi-radio wireless networks   总被引:1,自引:0,他引:1  
Providing Quality of Service (QoS) is a major challenge in wireless networks. In this paper we propose a distributed call admission control protocol (DCAC) to do both bandwidth and delay guaranteed call admission for multihop wireless mesh backbone networks, by exploiting the multi-channel multi-radio (mc-mr) feature. We propose a novel routing metric for route setup, and present an efficient distributed algorithm for link reservation that satisfies the required bandwidth and reduces the delay by a local scheduling that minimizes one hop delay. To the best of our knowledge, this is the first distributed protocol that embeds mc-mr feature in Time Division Medium Access (TDMA) to do QoS call admission in wireless backbone networks. Extensive simulation studies show that our protocol significantly improves network performance on supporting QoS sessions compared with some widely used protocols.  相似文献   

20.
Wireless mesh networks (WMNs) have emerged recently as a key solution for next-generation wireless networks; they are low cost and easily deployed technology. However, WMNs have to deal with a low bandwidth which prevents them from guaranteeing the requirements of applications with strict constraints. To overcome this limitation, we propose in this paper a new admission control model which integrates a dynamic link scheduling scheme, named ACLS, in order to optimize the network bandwidth use. We formulate the admission control problem as a binary linear programming problem (BL2P). The proposed admission control integrates an algorithm, based on the Dakin’s branch and bound (B&B) method, which respects the bandwidth and delay required by the flows. The proposed ACLS solution has been validated on ns2, and the simulation results showed that ACLS model has better performance than the reference solution BRAWN; it accepts more flows while guaranteeing their delay and bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号