首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Useful coolant flowrate in grinding   总被引:2,自引:1,他引:1  
A model has been developed for flowrate between a rotating grinding wheel and a workpiece. It was found that the useful flow that passes through the contact zone is a function of the spindle power for fluid acceleration, wheel speed and delivery-nozzle jet velocity. Two loss coefficients having values less than 1 are required to be calibrated for the particular grinding wheel and fluid delivery type. The model is then valid for a range of nozzle flowrates for the particular wheel and nozzle conditions. The flowrate delivered is related to unit width of the delivery nozzle assumed to be unit width of grinding contact. The model makes it possible to determine a suitable value of nozzle outlet gap to achieve a required fluid film thickness in the grinding zone. A guide is given to optimisation of the jet velocity in relation to the power required to accelerate the fluid and the particular velocity of the wheel. The model has been validated experimentally. Its simplicity and accuracy allow application to a wide range of grinding situations.  相似文献   

2.
高速磨削冷却液的注入新方法   总被引:6,自引:0,他引:6  
本文概述了磨削液的类型和作用,分析了磨削液注入方法对冷却效果的影响,介绍了磨削液注入新技术,研制了新型的冷却喷嘴,并建立了估算临界流量模型。  相似文献   

3.
磨削中摩擦的一些研究   总被引:1,自引:1,他引:0  
讨论了冷却液和喷嘴对摩擦的影响,给出了颗磨粒磨削摩擦系数的数学模型,研究了不同速度单颗磨粒磨削的摩擦系数。试验结果表明,存在一个临界磨削速度。小于临界磨削速度时,摩擦系数随速度的增加而减小,磨削速度超过临界速度后,摩擦系数随速度的增加而略有增大,我们称之为摩擦系数的速度效应。  相似文献   

4.
Optimisation of fluid application in grinding   总被引:2,自引:0,他引:2  
This paper addresses the quantity of fluid required for grinding and the method of application. Results from this research suggest that supply flowrate needs to be 4 times the achievable ‘useful’ flowrate. Extra flowrate is wasted. It is shown that jet velocity and jet flowrate can be separately specified. Improved system design allows ‘actual’ useful flowrate to approach ‘achievable’ useful flowrate. Achievable useful flowrate depends on wheel porosity and wheel speed whereas actual useful flowrate depends on nozzle position, design, flowrate and velocity. Experimental methods are complemented by computational fluid dynamics (CFD) simulations.  相似文献   

5.
Existing analytical thermal models for predicting surface burns due to grinding have limited use because of their reliance on parameters that are not readily obtainable in practice. This paper presents a practical and consistent fuzzy rule-based model for estimating the grinding conditions at which “burn limits” occur. The model consists of 37 absolute and eight relative rules. It has a wide range of applications over many types of steels, Alundum wheels, and grinding conditions. It is also simple to implement, from a rule-chart mode to an intelligent on-line adaptive control mode.  相似文献   

6.
Coolant is a term generally used to describe grinding fluids used for cooling and lubricating in grinding process. The main purposes of a grinding fluid can be categorized into lubrication, cooling, transportation of chips, cleaning of the grinding wheel and minimizing the corrosion. On the other hand, grinding fluids have negative influences on the working environment in terms of the health of the machine operator, pollution and the possibility of explosion (for oil). Furthermore, the cost of the grinding fluid, filtering and waste disposal of the metal working fluids is even higher than the tool cost and constitutes a great part of the total cost. Additionally, grinding fluids can not effectively penetrate into the contact zone, are health hazard and their consumption must be restricted. Generally, compared to other machining processes, grinding involves high specific energy. Major fraction of this energy is changed into heat, which makes harmful effect on the surface quality as well as the tool wear. Since there is no coolant lubricant to transfer the heat from the contact zone in dry grinding, surface damages are not preventable. Alternatives to current practices are getting more serious consideration in response to environmental and operational cost pressures. One attractive alternative is the minimum quantity lubrication (MQL) grinding or the near dry grinding (NDG). In near dry grinding an air–oil mixture called an aerosol is fed into the wheel-work contact zone. Compared to dry grinding, MQL grinding substantially enhances cutting performance in terms of increasing wheel life and improving the quality of the ground parts. In this research, the influences of workpiece hardness and grinding parameters including wheel speed, feed rate and depth of cut have been studied on the basis of the grinding forces and surface quality properties to develop optimum grinding performances such as cooling, lubrication, high ecological and environmental safety.  相似文献   

7.
Promising alternatives to conventional dry and fluid coolant applications are minimum quantity lubricant (MQL) or near dry grinding. Despite several researches, there have been a few investigations about the influence of MQL parameters on the process results, such as oil flow rate, air pressure, MQL nozzle position and distance from the wheel–workpiece contact zone. The current study aims to show through experiment and modeling, the effects of the above parameters on grinding performance such as grinding forces and surface roughness. The results show that the setting location of the nozzle is an important factor regarding the effective application of MQL oil mist. It has been shown that optimal grinding results can be obtained when the MQL nozzle is positioned angularly toward the wheel (at approximately 10–20° to the workpiece surface). In addition, it is found that the efficient transportation of oil droplets to the contact zone requires higher mass flow rate of the oil mist towards the grains flat area and longer deposition distance of an oil droplet. Applying the new setup, considerable reduction in the grinding forces and surface roughness has been achieved.  相似文献   

8.
本文根据轴对称非球面的加工误差特性,通过分析轴对称非球面磨削加工中砂轮磨削线速度、进给速度对加工精度影响的条件,提出控制砂轮进给速度使轴对称非球面工件各点磨削量均匀的方法。该技术避免了传统加工方法中原理上固有的磨削量差异缺陷,提高了系统的加工精度。研究结果表明:进给速度控制方法针对轴对称非球面加工中常用的平面砂轮、圆弧砂轮、球面砂轮,均得到了良好的控制效果;采用新方法的数学模型更接近于理论计算轨迹,可以进一步提高工件的加工精度;新方法进给速度由外沿加工至中心部分,进给速度逐渐加快;并且变化率也逐渐增大。  相似文献   

9.
A new method is proposed for measuring the heat transfer coefficient in the vicinity of the wheel-workpiece contact zone. The accuracy of measurement is estimated by using a finite element method and the factor for correcting the measured results is derived. The experiments are performed in a number of conditions where grinding fluid is supplied and the following measures are consequently recommended for increasing the cooling efficiency: (1) set the velocity of coolant to more than the critical value to penetrate the air flow layer formed around the wheel periphery; (2) use a nozzle with a thin throat, about 1 mm in height, and attach a scraper plate above the nozzle outlet; (3) choose a wheel of large grain size and dress roughly, or form shallow grooves on the wheel periphery; and (4) set a higher wheel speed.  相似文献   

10.
This paper develops a quantitative model to predict the power of coolant penetration into the grinding zone of a segmented wheel. The model accounts for the coolant properties and system design characteristics governing the penetration mechanism revealed by the theory established in Part 1 of this series study. By coupling with the author's previous mist formation analysis, the model offers a quantitative control guideline for the optimal use of grinding coolants.  相似文献   

11.
Grinding requires high specific energy and the consequent development of high temperature impairs workpiece quality by inducing tensile residual stress, burn, micro cracks etc. Control of grinding temperature is achieved by providing effective cooling and lubrication. Conventional flood cooling is often ineffective due to the relative inaccessibility of the fluid to the actual grinding zone, film boiling etc. Further these fluids are also a source of health hazards. Minimization and possibly the elimination of fluid coolants by substituting their functions by some other means is of current research interest. This paper deals with an investigation on using graphite as a lubricating medium to reduce the heat generated at the grinding zone. An experimental set-up has been developed for this and a detailed comparison has been done with dry and coolant flooded grinding in terms of forces, specific energy, temperature and surface finish. Results show that grinding force, energy and temperature are reduced and resultant surface finish depends on workpiece material.  相似文献   

12.
It has been found that using a segmented grinding wheel with a fluid chamber can significantly minimise the quantity of coolant while improving the ground surface integrity. The present investigation aims to explore the fluid flow mechanism in such a wheel system. To this end, the Weber theory for Newtonian jet instability was applied to quantitatively determine the contribution of coolant flow rate to mist and ligament modes. A semi-analytical model was then developed to predict the mist flow rate by taking into account both the grinding parameters and fluid properties. It was shown that the model prediction was in good agreement with experimental measurements. Because of the comprehensive integration of variables in the formulation, the model provides a good fundamental understanding of the mist formation and offers a practical guideline for the selection and use coolant in minimising the mist flow rate.  相似文献   

13.
高效率磨粒加工技术发展及关键技术   总被引:4,自引:0,他引:4  
高效率磨粒加工是先进制造方法的重要组成部分,集粗精加工与一身,达到可与车、铣和刨削等切削加工方法相媲美的金属磨除率,而且能实现对难磨材料的高性能加工。阐述了高速超高速磨削、快速点磨削、高效深切磨削、缓进给磨削、高速重负荷荒磨以及砂带磨削等高效率磨粒加工技术的国内外的发展及最新研究进展。研究了高效磨削砂轮、主轴及其轴承技术、高效率磨床、磨削液供给技术、砂轮、工件安装定位及安全防护技术以及磨削状态检测及数控技术等实现高效率磨粒加工的关键技术,分析了发展高效率磨粒加工的重要性。  相似文献   

14.
Grinding fluid is commonly applied to control grinding defects caused by high grinding zone temperature. Delivery of fluid to the grinding zone is obstructed by the formation of a stiff air layer around the grinding wheel. This results in huge wastage of grinding fluid. In the present paper, results of using a pneumatic barrier and a compound nozzle are discussed with respect to delivering fluid deep into the grinding zone. Grinding fluid passing through the grinding wheel contact zone is measured under different modes of fluid delivery using a flood cooling, or a compound, nozzle, with or without the application of a pneumatic barrier. It is found that the system using a pneumatic barrier with flood cooling nozzle, and that employing a compound nozzle perform better than the flood cooling nozzle. A compound nozzle along with a pneumatic barrier renders substantially less wastage of grinding fluid even at a low flow rate of grinding fluid. Above a fluid discharge of 475 ml/min, the compound nozzle alone shows effective penetration of grinding fluid through the grinding zone. Reduction of grinding force, specific energy and roughness of ground surface are obtained after using compound nozzle fluid delivery system. Compound nozzle may be used instead of flood cooling nozzle as it improves grinding performance even using 52.5 % less discharge of grinding fluid.  相似文献   

15.
16.
One of the most important problems in high precision grinding is the optimisation of the surface residual stress distribution of ground components. It has been realised that the heat generated in the grinding zone plays a central role in the phase transformation of workmaterials that would alter the residual stress formation. The purpose of this paper was to reveal the mechanism of phase transformation of workmaterials induced by grinding. The finite element method was used to simulate the grinding processes. The heat source generated during grinding was considered as a moving heat flux with a triangular profile. Effects of table speed, heat flux distribution, thermal properties of workmaterials and convective features of coolant were discussed in detail. It was found that an optimal combination of grinding conditions could minimise the depth of phase transformation. The results of this paper also offered essential information for the mechanism exploration of residual stresses in ground components.  相似文献   

17.
An experimental investigation of the high removal-rate centreless grinding process applied to steel and cast-iron has allowed the investigators to present “limit-charts”. These limit charts illustrate the characteristic diagram for boundaries of operation where the grinding variables are infeed rate, workpiece speed and grinding wheel speed. The boundaries determined in this investigation were formed by burn, chatter, or available power (75 kW). It was not possible to achieve an excessive wheel wear condition although this might have been possible if more power had been available. The shape of the diagram means there is an optimum point of operation within the region enclosed by the boundaries. This forms the basis of a control strategy.Kinematic characterisation of the grinding process is developed by attention to the concept of a ‘speedeffect”, a “size effect” and a “shape effect”. Results for the speed effect are distinguished and presented separately from results for the size effect and shape effect to avoid mixed causes for the differing physical effects.A two-dimensional surface is presented showing the variation of grinding energy with variations in infeedrate, workpiece speed and grinding wheel speed. Because speed, shape and size effects are separated on the surface it is possible to read the optimum grinding wheel speed for minimum energy. For these experimental conditions, the optimum grinding wheel speed was found to be approximately 50 m/s. In the region of the optimum speed, specific energy is relatively insensitive to variations in operating speeds and feeds which is a useful feature when devising an automatic control strategy.  相似文献   

18.
高速/超高速磨削条件下,砂轮边缘的高速空气带会阻碍磨削液注入磨削区。空气带压力与砂轮速度的平方成正比。快速点磨削是一种新型高速/超高速磨削技术,接触区很小,实际磨削功率低,冷却及散热效果好。在分析了高速/超高速磨削砂轮周围旋转空气带动压力及速度分布特点的基础上,根据热力学原理及快速点磨削特点,分析并建立了磨削液的供给流量和供液速度的理论模型。在此基础上,建立了面向绿色制造的快速点磨削的磨削液喷嘴直径及供液压力的工程计算公式。  相似文献   

19.
Green cutting has become focus of attention in ecological and environmental protection. Water vapor is cheap, pollution-free and eco-friendly. Therefore water vapor is a good and economical coolant and lubricant. Water vapor generator and vapor feeding system were developed to generate and feed water vapor. Comparative experiments were carried out in witch YT15 (P type in ISO) tool was used in cutting C45 steel under the conditions of compress air, oil water emulsion, water vapor as coolant and lubricant and dry cutting, respectively. The experimental results showed that with water vapor as coolant and lubricant the cutting force is further reduced, the friction coefficient, the chip deformation coefficient and the surface roughness value decreased and the cutting temperature lowered. Kinetic model of penetration capillary in tool–chip interface of cutting fluid revealed that the lubricity effect is much better with water vapor as coolant and lubricant because of its excellent penetration performance and forming of low shearing strength lubrication layer. Therefore, the use of water steam as coolant and lubricant proves to be a green cutting technique.  相似文献   

20.
用有限元法进行低温磨削钛合金温度场的研究   总被引:10,自引:0,他引:10  
钛合金的加工性能很差,磨削温度对其磨削性能有重要影响,为了改善钛合金的磨削加工性,分析磨削区温度场分布情况并研究如何有效降低磨削区温度具有十分重要的意义,本文建立了平面磨削时工件的传热学模型,并基于有限元原理,利用工程数值模拟软件ANSYS对钛合金(TC4)工件在常温和使用液氮冷却的低温条件下的磨削情况进行了模拟仿真研究,通过分析不同温度条件下磨削钛合金时的磨削温度场分布情况,表明采用液氮冷却的低温磨削技术可以有效降低磨削区的温度,从而有利于钛合金的磨削,文章最后在常温及低温条件下对钛合金进行了磨削实验研究,验证了仿真分析的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号