首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
基于点热源的GMAW热输入分布模式及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
分析比较了三种基于点热源的熔化极气体保护焊(GMAW)热输入分布模式,并结合移动点热源作用下焊接温度场的瞬态解分别对其进行了计算,通过焊缝横截面熔合线几何形状计算值与实测值的比较,对三种热输入分布模式进行了评估.利用所建串热源模型模拟了Q195低碳钢和JG590低合金钢GMAW焊缝横截面熔合线的几何形状,进行了Q195钢和JG590钢的GMAW工艺试验,通过焊缝横截面熔合线的几何形状对所建模型进行了试验验证.采用计算和试验相结合的方法,分析评价了目前常用的t3/5计算公式,利用JG590钢焊接温度场的计算结果,结合JG590钢的焊接连续冷却组织转变图,成功地预测了焊接接头熔合区的组织及硬度.  相似文献   

2.
激光+GMAW复合热源焊接过程热-力耦合数值分析   总被引:3,自引:2,他引:1  
从宏观的焊接热过程出发,根据激光+GMAW复合热源焊接的特点,提出了适用于复合热源焊接的“双椭球体+峰值递增圆柱体”组合式体积热源分布模式;建立了激光+GMAW复合热源焊接过程的有限元模型,数值计算了焊接温度场和焊缝横截面的形状尺寸,计算结果与试验结果吻合良好,证明了组合式体积热源模型的合理性和适用性. 采用焊接温度场的计算结果,进一步对复合热源焊接和GMAW的焊接变形和残余应力进行了数值模拟和对比分析. 结果表明,在焊缝熔深基本相同的情况下,复合热源焊接的焊接热输入、焊缝熔宽、焊接变形和高应力区域范围等均比GMAW小. 研究结果印证了激光+GMAW复合热源焊接工艺的优越性,并为焊接工艺参数的优化提供了基础理论数据.  相似文献   

3.
20061049 电塑性摩擦焊接过程的动态再结晶数值模拟;20061050 带压开孔结构多道间断焊的数值模拟;20061051 基于串热源及CCT囤的GMAW焊接热影响区组织及硬度预测;20061052 钛台金平板电子束焊接温度场有限元分析;20061053 T形焊接接头的三维有限元模拟;20061054 焊接热循环对X-60管线钢中第二相粒子的影响;  相似文献   

4.
铝合金T型接头激光+GMAW复合热源焊温度场的有限元分析   总被引:2,自引:0,他引:2  
从宏观传热学出发,综合考虑焊缝横断面形状特点及接头形式对焊接热流的影响,建立了适用的T型接头激光+GMAW复合热源焊的组合式热源模型.利用双椭球体热源模型描述电弧热流和熔滴热焓,采用热流峰值指数递增-锥体热源模型表征激光热输入,并通过坐标系转换的方法旋转热源模型,以考虑焊枪倾斜对焊接热流分布的影响,推导出适用于T型接头复合焊的热源模型表达公式,从而简化了T型接头焊接数值模拟中的模型加载过程.将所建立的模型用于不同焊接条件下铝合金T型接头激光+GMAW单侧双面焊接焊缝形状和尺寸的模拟计算,计算结果与实验结果吻合较好,从而证明了模型的准确性和适用性;利用该模型计算了铝合金T型接头复合焊近缝区不同位置的热循环曲线,分析了铝合金T型接头复合焊热循环特征,为其组织和性能的预测奠定了基础.  相似文献   

5.
对于存在材料填充过程的熔化极气体保护焊(GMAW),提出过热熔滴均匀热生成体热源和电弧压力双椭球体热源结合的组合热源模型,计算过程考虑了温度对材料相变及热物理特性的影响,采用"生死单元"技术,实现了模拟过程中焊接材料的逐步填充;同时将模拟结果与试验结果进行比较,两者表现出较好的一致性。所建立的组合热源充分考虑了GMAW焊的工艺特点,使焊缝形状和尺寸的数值模拟精度有了较大提高。  相似文献   

6.
5A02/Q235钢Nd:YAG激光·脉冲MIG复合热源熔-钎连接;激光-TIG复合热源焊接参数对镁/钢异种材料焊接接头的影响;激光-电弧复合焊接咬边缺陷分析及抑制方法; 激光+GMAW复合热源焊焊缝成形的数值模拟——Ⅱ.组合式体积热源的作用模型  相似文献   

7.
基于点热源的GMAW热输入分布模式及应用,移去热源前后中高碳钢堆焊温度场和应力场的数值模拟,厚板铝合金YAG-MIG复合焊接温度场数值模拟,搅拌摩擦焊焊接温度数值模型及其影响因素,[编者按]  相似文献   

8.
5A02/Q235钢Nd:YAG激光·脉冲MIG复合热源熔-钎连接;激光-TIG复合热源焊接参数对镁/钢异种材料焊接接头的影响;激光-电弧复合焊接咬边缺陷分析及抑制方法; 激光+GMAW复合热源焊焊缝成形的数值模拟——Ⅱ.组合式体积热源的作用模型  相似文献   

9.
胡莎莎  李霄  聂洁  石威 《热加工工艺》2013,42(3):210-212
根据埋弧焊的焊接过程和热源特点,利用ANSYS软件建立埋弧焊几何模型和有限元模型,模拟X80管线钢埋弧焊焊接温度场.焊接工艺参数为I=1500A、U=33V、v=1.7m/min,焊接热源选择双椭球热源模型,用APDL程序施加移动热源载荷,计算得出焊接熔池的形状、尺寸及热影响区的温度分布.模拟结果与实验结果吻合较好.  相似文献   

10.
基于MSC.Marc有限元软件,模拟研究了T2铜与Q235钢异种材料的焊接热过程。根据试件尺寸建立实体模型,采用双椭球移动热源模型对试件的温度场进行了三维动态模拟。研究了铜和钢焊接温度场的分布规律,分析热源作用位置的变化对铜和钢焊接温度场的影响。结果表明,数值模拟结果与理论和实验结果一致,验证了模拟方法的正确性。合理分布热源位置可有效改善铜和钢两侧的温度分布情况,一定程度上解决铜和钢物理性能差异大的问题。  相似文献   

11.
Abstract

A 3-D string heat source model was developed to simulate the thermal process for gas metal arc welding (GMAW) with a new transient solution of heat transfer. Reflection heat sources, the imaginary heat source and the imaginary heat sink were introduced to make the solution more reliable. The moving welding heat input during GMAW welding process was presented with a moving 3-D string heat source model made up of a group of elementary point heat sources along the moving coordinate axes. Using established models, the whole process from arc starting, quasi-steady state (QSS), to arc extinguishing during welding Q195 steel has been simulated. Meanwhile, some calculations and experiments for JG590 steel have also been made. The predicted weld cross-sections and welding thermal cycles show a good agreement with experimental measurements.  相似文献   

12.
焊接热输入对HQ130钢焊接热影响区组织硬度的影响   总被引:3,自引:0,他引:3  
孙俊生  武传松 《金属学报》1999,35(9):999-1004
MIG/MAG焊接热输入包括焊接电弧热流和熔滴带入熔池的热焓量两部分,本文以作者提出的焊接热输入分布模型为基础,建立了熔流场和温度场的数值分析模型,采用数值模拟技术研究了焊接热输入对HQ130钢焊接热影响区(HAZ)组织和硬度的影响规律,给出了不同焊接热输入时HAZ不同部位奥氏体晶粒尺寸及组织和硬度的计算结果,实验表明,HQ130钢焊接热循环及HAZ组织,硬度的计算值和值吻合良好。  相似文献   

13.
为了弄清t8/5对X90管线钢焊接热影响区组织和硬度的影响,利用Gleeble-3500热模拟试验机对该钢焊接热影响区在t8/5=10~300s下的热循环过程进行了模拟;结合热膨胀法和金相法建立了SHCCT曲线;针对各模拟样品,采用光学显微镜和透射电镜观察了显微组织,测定了维氏硬度HV0.3。结果表明:随着t8/5的减小,试验钢焊接热影响区相变开始和结束的温度降低,粒状贝氏体数量减少,板条贝氏体数量增多,原奥氏体晶粒和贝氏体铁素体细化,使该区域的硬度值升高。该钢环焊的t8/5宜控制在10~20s。  相似文献   

14.
GMAW焊接传热及其对HAZ奥氏体晶粒长大过程的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
精确分析熔化极气体保护电弧焊(GMAW)焊接传热过程的前提是对施加于工件表面上的焊接热输入分布模式有一个恰当的、合乎实际的描述。本文作者根据电弧物理的基本原理和熔滴与熔池的交互作用,建立了双峰分布的电弧热流密度分布模型,确定了熔滴热焓量在熔池内部的分布区域。以此为基础,建立了GMAW焊接传热的数学模型,给出了焊接热影响区奥氏体晶粒长大的动力学方程。采用数值模拟技术研究了低碳钢和HQ130钢HAZ的  相似文献   

15.
王秋影  陈辉  胡智博  江超  李达 《焊接学报》2014,35(10):109-112
针对一种辙叉用贝氏体钢,采用Gleeble-3500对其焊接热循环过程进行了热模拟试验.采用光学显微镜、扫描电子显微镜、透射电子显微镜和硬度试验对不同冷却速度下焊接热影响区的组织和性能进行研究.作出加热和冷却膨胀曲线,并采用切线法测定奥氏体转变开始温度(Ac1)、奥氏体转变结束温度(Ac3)和不同冷却速度下的相转变温度.根据试验结果绘出辙叉用贝氏体钢的焊接热影响区连续冷却转变(simulated heat affected zone continuous cooling transforming,SHCCT)曲线,为其焊接性研究提供了基础数据,并用于预测热影响区的组织和性能,可用于指导贝氏体钢辙叉焊接及焊补工艺的优化设计.  相似文献   

16.
高效化焊接技术是目前焊接领域研究的热点,其应用领域越来越广泛和深入.针对轻型车辆广泛采用的高强高硬合金钢,采用高效双丝熔化极气体保护焊系统,进行了高强高硬合金钢高效化双丝共熔池对接焊缝焊接技术研究.试验采用奥氏体不锈钢焊丝进行高强高硬合金钢的焊接工艺试验,并与相同热输入的单丝熔化极焊接接头进行了对比分析,进行了金相组织、显微硬度、力学性能分析.结果表明,采用高效双丝共熔池熔化极气体保护焊工艺,获得良好的高强高硬合金钢对接焊缝焊接接头,力学性能满足使用要求.  相似文献   

17.
应用ANSYS软件对低碳钢SS400单道次焊接过程进行三维有限元模拟,将得到焊接温度场与焊接CCT曲线结合,对热影响区宽度和组织、硬度分布进行预测,通过焊接试验进行验证. 结果表明,模拟计算的熔合区宽度为0.7~1.6 mm,过热粗晶区为1.3~2 mm,相变重结晶区和不完全重结晶区各为1 mm左右,热影响区整体宽度为3~4 mm,预测过热粗晶区硬度为180~195 HV,组织为铁素体、贝氏体和珠光体,模拟预测与试验结果较为吻合,因此计算模型和预测方法可靠,可为焊接热影响区组织和性能预报的进一步工作提供依据.  相似文献   

18.
高温挤压后经过人工时效处理的热处理强化型材是广泛应用于高速列车车体的结构材料。在列车车体的焊接制造过程中,由于焊接热源作用改变了型材的热处理状态,导致接头区域的力学性能弱化。通过采集焊接试验过程的热循环曲线,研究7系铝合金接头热影响区的温度变化过程,根据热循环曲线特征将热影响区划分为固溶区和过时效区,并分析热影响区的组织演变和硬度分布规律。脉冲MIG和激光-MIG复合焊两种焊接方法在接头的过时效区域都出现软化。  相似文献   

19.
A model based on a double-ellipsoidal volume heat source to simulate the gas metal arc welding (GMAW) heat input and a cylindrical volume heat source to simulate the laser beam heat input was developed to predict the temperature field and thermally induced residual stress in the hybrid laser-gas metal arc (GMA) welding process. Numerical simulation shows that higher residual stress is distributed in the weld bead and surrounding heat-affected zone (HAZ). Effects of the welding speed on the isotherms and residual stress of the welded joint are also studied. It is found that an increase in welding speed can reduce the residual stress concentration in the as-weld specimen. A series of experiments has been performed to verify the developed thermo-mechanical finite element model (FEM), and a qualitative agreement of residual stress distribution and weld geometrical size is shown to exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号