首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberrations of imaging systems can be described by using a polynomial expansion of the dependence on field position, or the off-axis distance of a point object. On-axis, or zero-order, aberrations can be calculated directly. It is well-known that aberrations with linear field dependence can be calculated and controlled by using the Abbe sine condition, which evaluates only on-axis behavior. We present a new set of relationships that fully describe the aberrations that depend on the second power of the field. A simple set of equations is derived by using Hamilton's characteristic functions and simplified by evaluating astigmatism in the pupil. The equations, which we call the pupil astigmatism criteria, use on-axis behavior to evaluate and control all aberrations with quadratic dependence on the field and arbitrary dependence on the pupil. These relations are explained and are validated by using several specific optical designs.  相似文献   

2.
Building on earlier work on the nodal aberration theory of third-order aberrations and a subset of fifth-order terms, this paper presents the multinodal field dependence of the family of aberrations describing the shape of the medial focal surface (the focal surface upon which the minimum RMS wavefront error is measured) and the astigmatic aberrations with respect to this surface through the fifth order. Specifically, the multinodal field dependence for W(420M) and W??? (the field-quartic medial surface and field-quartic astigmatism) are derived and presented as well as their influence on the magnitude and nodal field dependence of the companion lower-order terms, W(220M) and W???. This paper provides the first derivations of field-quartic aberrations presented by the author in the refereed literature.  相似文献   

3.
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead?Clag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron?CPhillip??s model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.  相似文献   

4.
Mahajan VN 《Applied optics》1995,34(34):8057-8059
In the first two Notes of this series,(l,2) we discussed Zernike circle and annular polynomials that represent optimally balanced classical aberrations of systems with uniform circular or annular pupils, respectively. Here we discuss Zernike-Gauss polynomials which are the corresponding polynomials for systems with Gaussian circular or annular pupils.(3-5) Such pupils, called apodized pupils, are used in optical imaging to reduce the secondary rings of the pointspread functions of uniform pupils.(6) Propagation of Gaussian laser beams also involves such pupils.  相似文献   

5.
McGuire JP  Chipman RA 《Applied optics》1994,33(22):5101-5107
In paper 1 [Appl. Opt. 33, this issue (1994)] we examined the polarization aberrations of rotationally symmetric systems. In this paper we extend polarization-aberrration theory to include two types of tilted and decentered systems composed of rotationally symmetric elements. One type is systems with collinear centers of curvatures but with decentered pupils. The symmetry in such systems permits the analysis to proceed along lines similar to those in paper 1. The other type is systems with arbitrary tilts and decenters. In these systems the field dependencies of the aberrations from each surface are not concentric. The extension is made by use of a polarization-aberration matrix with vector, instead of scalar, arguments.  相似文献   

6.
7.
McGuire JP  Chipman RA 《Applied optics》1994,33(22):5080-5100
The polarization in isotropic radially symmetric lens and mirror systems in the paraxial approximation is examined. Polarized aberrations are variations in the phase, amplitude, and polarization state of the electromagnetic field across the exit pupil. Some are dependent on the incident polarization state and some are not. Expressions through fourth order for phase, amplitude, linear diattenuation, and linear retardance aberrations are derived in terms of the chief and marginal ray angles of incidence and the Taylor series expansion coefficients of the Fresnel equations for reflection and transmission at uncoated and thin-film-coated interfaces. Applications to polarization ray tracing are discussed.  相似文献   

8.
Mahajan VN 《Applied optics》1994,33(34):8125-8127
Zernike annular polynomials that represent orthogonal andbalanced aberrations suitable for systems with annular pupilsare described. Their numbering scheme is the same asfor Zernike circle polynomials. Expressions for standard deviationof primary and balanced primary aberrations are given.  相似文献   

9.
Zernike circle polynomials, their numbering scheme, and relationship to balanced optical aberrations of systems with circular pupils are discussed.  相似文献   

10.
Many authors, dating back to at least the 1950s, have presented mathematical expansions of the wave-front aberration function for optical systems without symmetry, typically based on limiting assumptions and simplifications, with some of the most recent work being done by Howard and Stone [Appl. Opt. 39, 3232 (2000)]. This paper reveals that in fact there are no new aberrations in imaging optical systems with near-circular aperture stops but otherwise without symmetry. What does occur is that the field dependence of an aberration often changes when symmetry is abandoned. Each aberration type develops a characteristic field behavior in a system without symmetry. Specifically, for example, astigmatism, develops a binodal field dependence; e.g., there are typically two points in the field with zero astigmatism, and typically neither point is on axis. This construct, nodal aberration theory, for understanding the aberrations in systems without symmetry becomes a direct extension of an optical designer's knowledge base. Through the use of real ray-based analysis methods, such as Zernike coefficients, it is possible to understand completely the aberrations of optical systems without symmetry in terms of rotationally symmetric aberration theory with the simple addition of the concept of field nodes.  相似文献   

11.
The computational effort in determining the dynamic response of linear systems is usually reduced by adopting the well-known modal analysis along with modal truncation of higher modes. However, in the case in which the contribution of higher modes is not negligible, modal correction methods have been introduced to improve the accuracy of the dynamic response, for both deterministic and stochastic input. In the latter case the random response is usually corrected via various methods determined as rough extensions of methods originally proposed for deterministic input. Consequently the efficiency of the correction methods is not suitable, from both theoretical and computational points of view. In this paper, a new approach to cope with the non-stationary response of linear systems is presented. The proposed modal correction method provides a correction term determined as a pseudo-stationary contribution of the equation governing either first-order or second-order statistics. Owing to the fact that no truncation criteria are well established for random vibration study, the proposed modal correction method offers a suitable vehicle for determining very accurately the stochastic response of MDOF linear systems under Gaussian stationary and non stationary excitation as evidenced in the numerical applications.  相似文献   

12.
We propose a discretization strategy for systems with axial symmetry. This strategy replaces the continuous position coordinates by a discrete set of sensor points, on which the discrete wave fields transform covariantly with the group of 2 x 2 symplectic matrices. We examine polar arrays of sensors (i.e., numbered by radius and angle) and find the complete, orthonormal sets of discrete-waveguide Meixner functions; when the sensors come closer together, these tend to the Laguerre eigenmodes of the continuous waveguide. In particular, the fractional Hankel transforms are discretized in order to define the fractional Hankel-Meixner transforms and similarly for all axis-symmetric linear optical maps. Coherent states appear in the discrete cylindrical waveguide. Covariant discretization leads to the same Wigner phase-space function for both the discrete and the continuum cases. This reinforces a Lie-theoretical model for the phase space of discrete systems.  相似文献   

13.
Optical systems capable of three-dimensional transmission imaging are considered; these systems employ a conventional tomographic setup with an added linear shift-invariant optical system between the sample and the detector. A theoretical analysis is presented of image formation and sample reconstruction in such systems, examples of which include diffraction tomography and phase-contrast tomography with the use of analyzer crystals. An example is introduced in which the image is obtained by scanning the beam along the line orthogonal to the optic axis and to the axis of rotation with a one-dimensional slit or grating parallel to the rotation axis. We show that under certain conditions the proposed system may allow quantitative local (region-of-interest) tomography.  相似文献   

14.
The paper presents an overview on the preprocessing techniques of linear programming. A new reduction technique is also introduced and the presolve is extended to mixed integer and quadratic programming problems. Numerical results are presented to demonstrate the impact of presolving in interior point and simplex implementations. The demonstrative results are given on large-scale linear, mixed integer and quadratic programming test problems.Cs. Mészáros: Supported in part by Alexander von Humboldt Foundation Correspondence to: U.H. Suhl  相似文献   

15.
Mahajan VN 《Applied optics》1995,34(34):8060-8062
The use of Zernike polynomials to calculate the standard deviation of a primary aberration across a circular, annular, or a Gaussian pupil is described. The standard deviation of secondary aberrations is also discussed briefly.  相似文献   

16.
17.
A novel phase correction method is presented, which starts from phase data that may be corrupted with (measurement) noise. Due to an appropriate choice of the model, the phase intercept distortion is avoided. Some practical examples and experimental results are given  相似文献   

18.
We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.  相似文献   

19.
Based on the eigenvalues of the ray transformation matrix, a classification of ABCD systems is proposed and some nuclei (i.e., elementary members) in each class are described. In the one-dimensional case, possible nuclei are the magnifier, the lens, and the fractional Fourier transformer. In the two-dimensional case we have-in addition to the obvious concatenations of one-dimensional nuclei-the four combinations of a magnifier or a lens with a rotator or a shearing operator, where the rotator and the shearer are obviously inherently two-dimensional. Any ABCD system belongs to one of the classes described in this paper and is similar (in the sense of matrix similarity of the ray transformation matrices) to the corresponding nucleus. Knowledge of a nucleus may be helpful in finding eigenfunctions of the corresponding class of first-order optical systems: one only has to find eigenfunctions of the nucleus and to determine how these functions propagate through a first-order optical system.  相似文献   

20.
Jackel S  Moshe I  Lavi R 《Applied optics》2003,42(6):983-989
Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optic imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optic retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration/bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power/beam-quality results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号