首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This paper reports on the micro-instrumented indentation of a porous silicon structure obtained by anodization of a highly p+-doped (100) silicon substrate aged over 1 week. The three-layer structure obtained consists of oxidized porous silicon (cap-layer), porous silicon (inner-layer) and silicon substrate. The hardness curve has the typical “U shape” of low-dielectric-constant films when the indentation depth rises: the early decrease in hardness, due to the soft inner layer, is followed by an increase, due to the hard substrate. A multilayer model is developed to account for hardness variation with respect to the applied load. This model considers the crumbling of the cap-layer and of the inner porous structure. As a result, it is shown that considering the minima in the U shape gives an over-estimated value when it comes to assessing the coating hardness. In our experiment, this minimum depends on both the hardness and the thickness of the oxidized cap layer, but not on the mechanical properties of the substrate, even for indentation depths slightly lower than the film's thickness.  相似文献   

2.
Electrical discharge machining (EDM) is an alternative-shaping route for manufacturing complex component shapes of hard and brittle materials such as hardmetals (WC-Co cemented carbides). It is well established that in these materials EDM typically induces a heat affected surface layer with poor integrity. This degradation effect may be compensated through specific post-EDM surface treatments either by thermomechanical means or material surface deposition. In the latter case, a key property for optimal performance is the level of coating to substrate adhesion and how this is affected by the EDM-induced surface. The main objective of this investigation was to evaluate the adhesion strength of TiN coatings on EDMed hardmetals. A series of hardmetal samples that had been subjected to different multi-pass sequential EDM levels were coated with TiN. Adhesion behavior was assessed using the indentation adhesion test and comparing the critical load for crack extension (P c) and the interfacial fracture toughness (K Ic,interface) to those exhibited by the TiN coating deposited on a ground and polished substrate (used as baseline control). Experimental results indicated that indentation adhesion increased with finer-executed EDM, almost reaching baseline level values. The results are discussed on the basis of the compromising EDM influence on both surface integrity of the substrate and tortuousness at the interface, the latter resulting in mechanical anchoring of the TiN coating to the hardmetal substrate.  相似文献   

3.
《Thin solid films》2006,494(1-2):63-68
Amorphous carbon nitride (CNx) coatings are now being developed for a range of applications, e.g. as a protective top layer for hard disks or as a coating to reduce the friction between synthetic joints in the human body. The purpose of this work is to assess the mechanical properties of the latest generation of fullerene-like CNx deposited on different substrates in order to expand the number of potential applications. Samples of CNx on four different substrates have been studied using quasistatic nanoindentation with a wide range of peak loads, from 500 μN to 500 mN and dynamic nanoindentation for peak loads from 100 μN to up to 10 mN. Improved deposition techniques generate samples with extremely high values of hardness/Young's modulus; in some cases greater than 0.4 which is not achieved by any other hard material. Adhesion and fracture resistance are comparable to or better than that of traditional high hardness coatings, such as SiC and TiN, on similar substrates. The sample of CNx on titanium showed differences in hardness and Young's modulus at low loads, where the influence of the substrate is negligible, compared to coatings deposited on other substrates. This arises due to the fact that Ti from the substrate may have diffused into the coating in the deposition process creating a sort of C–N–Ti high hardness layer which would have some advantages of both the fullerene-like and traditional hard coating systems.  相似文献   

4.
Two mechanical characterization techniques were used to deduce the elastic, plastic, fracture, and adhesive properties of non-reactive physical vapour deposited alumina films of varying thickness on Al2O3-TiC substrates deposited at two different substrate biases. Depth-sensing indentation at both nano- and macroscopic load scales was used to determine the elastic and plastic properties of the films. Gravity-loaded Vickers indentation was performed to examine the fracture properties of the film and of the interface. Novel fracture mechanics models were developed to describe indentation-induced film fracture by channel cracks and indentation-induced interface delamination. The former model was used to determine the film toughness and the latter model was used to deduce the interfacial fracture resistance of the films and correctly predicted the effect of changing film thickness. Both models described the measured crack lengths with indentation load well and were used to identify the transition from radial and lateral cracking to channel and interfacial cracking.  相似文献   

5.
Summary Indentation is often a mode of in-service loading for a thin coating deposited on a substrate. Under such a loading, the strong adherence of the coating to the substrate is a basic necessity for successful performance of the coating. In this study, we investigate the indentation behavior of thin single and multilayered polymeric coatings using the finite element method. The deformation patterns and the stress fields that are generated during indentation are obtained by employing constitutive models which accurately represent the elastic-viscoplastic and hyperelastic behavior of the glassy and rubbery states of the polymeric layers under investigation. Three types of loading conditions are considered: indentation to (1) a fixed depth; (2) a fixed work; and (3) a fixed force. For these loading conditions, we then investigate the mechanical performance of various composite coatings subjected to an overall thickness design constraint. The composite structure is altered via variation in individual layer material composition, layer thickness and layer arrangement. It is shown how the placement of different material layers in a multilayer coating can alter the flow pattern and hence the distribution of stress state and resulting failure. It is also shown that a soft rubber elastic layer acts to greatly minimize the interfacial shear stress at the substrate, thereby reducing the risk of delamination of the coating, but the presence of the rubber can also produce detrimental tensile stresses on the surface. We then demonstrate that the tensile stress state can be eliminated through manipulation of the rubber layer thickness, without increasing the interface shear stress. Through these examples, a framework for evaluation and design of multilayer coatings for indentation resistance is provided.  相似文献   

6.
There is an increasing industrial demand for metal alloys with high wear resistance under severe operating conditions. Ni-based alloys, such as Inconel superalloys, are an excellent option for these applications; however, their use is limited by their high cost. Ni-based coatings deposited onto carbon steel substrates are being developed to achieve desired surface properties with reduced cost. Laser cladding deposition has emerged as an excellent method for processing Ni based coatings. In this work, microstructure, mechanical properties and local wear behaviour have been investigated in response to the addition of Cr3C2 ceramic particles into an Inconel 625 alloy deposited onto a ferritic steel substrate by laser cladding. Using this deposition technique, a homogeneous distribution of Cr3C2 particles was observed in the coating microstructure. The addition of ceramic particles to the starting powder resulted in the formation of hard precipitates in the coating microstructure. The partial dissolution of Cr3C2 particles during the laser cladding process increased the hardness of the Inconel 625 matrix. Depth sensing indentation and scratch tests were performed to study the local wear behaviour and scratch resistance of the cermet matrix compared with the conventional Inconel 625 alloy. Finally, the effect of Cr3C2 on mechanical properties was correlated with the observed microstructure modifications.  相似文献   

7.
TiN-MoSx composite coatings were deposited by pulsed DC closed-field unbalanced magnetron sputtering (CFUBMS) using separate Ti and MoS2 targets in an Ar and N2 gas environment. The effect of substrate bias voltage on the structure and mechanical properties of TiN-MoSx composite coating has been studied. The structure and composition of the coating were evaluated using field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) by X-ray and grazing incidence X-ray diffraction (GIXRD). Scratch adhesion tests, Vickers microhardness tests and ball-on-disc tests with a cemented carbide (WC-6%Co) ball were carried out to investigate mechanical properties of the coating. Application of substrate bias was found to transform the structure of TiN-MoSx composite coating from open columnar to a dense columnar structure. The changes in grain size and texture coefficient appear to be associated with variation in substrate bias voltage. The mechanical properties of the coating such as adhesion and composite microhardness were also observed to be related to the change in bias voltage. A maximum hardness of 22 GPa was obtained for a coating deposited at substrate bias voltage of −40 V. The improved structural and mechanical properties of the coating deposited at −40 V were also reflected in its excellent wear resistance property.  相似文献   

8.
Nanocrystalline spinel CoFe2O4/ZnFe2O4 bilayers were deposited by the pulsed laser deposition technique on amorphous fused quartz substrate at different substrate temperatures ranging from room temperature to 750?°C. The magnetic properties of the bilayers and of the single layer films deposited in identical conditions were studied at 300?K and at 10?K. Magnetic properties of the bilayers, in general, were found to be in between the individual values of the single layers. Magnetic measurements at 10?K clearly showed a two stepped magnetic hysteresis loop corresponding to the switching of the magnetic moments of the soft ZnFe2O4 and the hard CoFe2O4 layers. A study was also carried out by changing the thickness of ZnFe2O4 layer in the bilayer. This study showed that the magnetic properties of the bilayers even at room temperature can be controlled to some extent by changing the thickness of the soft ZnFe2O4 layer while maintaining a low substrate temperature of 350?°C.  相似文献   

9.
To combat the high residual stress problem in monolayer diamond-like carbon coatings, this paper fabricated multilayer diamond-like carbon coatings with alternate soft and hard layers via alternating bias during magnetron sputtering. The surface, cross sectional morphology, bonding structures and mechanical properties are investigated. The atomic force microscopy images indicate low bias results in rougher surface with large graphite clusters and voids suggesting low coating density. The multilayered coatings demonstrate relatively smooth surface stemming from higher bias. The cross sectional images from field emission scanning electron microscopy indicate coating thickness decreases as substrate bias increases and confirm that higher bias results in denser coating. Delamination is observed in monolayer coatings due to high residual stress. The trend of sp3/sp2 fraction estimated by X-ray photoelectron spectroscopy is consistent with that of ID/IG ratios from Raman spectra, indicating the change of bonding structure with change of substrate bias. Hardness of multilayer diamond-like carbon coating is comparable to the coatings deposited at low constant bias but the adhesion strength and toughness are significantly improved. Alternately biased sputtering deposition provides an alternative when combination of hardness, toughness and adhesion strength is needed in an all diamond-like carbon coating.  相似文献   

10.
As the introduction of piezoelectric materials into micro electromechanical systems increases, there is a correlating requirement for understanding the mechanical properties of these films. We have investigated the mechanical properties of unpoled PZT [Pb(Zr,Ti)O3] and PMNT [Pb(Mg1/3Nb2/3)1−xTixO3] thin films deposited by sputtering. In this study, nano-indentation, a technique which allows determination of the transverse mechanical properties, is used. It is the easiest method for assessing the biaxial elastic modulus and the hardness of thin films. It was confirmed that neither cracks, nor pile-ups, were observed for indentation depths below 20% of the film's thickness.The continuous stiffness method was used and allowed us to demonstrate that the indentation modulus decreases continuously with increasing grain diameter. This can be explained by the orientation changes of the crystallites with increasing grain diameter. The indentation modulus measured under load, or at almost null load (that is when the ferroelectric domains are or are not oriented by the stress) are coherent with those determined by the same method with a hard bulk ceramic. These results tend to show that the compliance Cij of the hard bulk ceramic can possibly be used with sputtered thin films. The hardness is almost independent of the grain diameter (Hb ≅ 7.5 ± 0.9 GPa) and higher than that for the bulk PZT ceramics considered in this study. PMNT and PZT films have appreciably the same mechanical characteristics. No influence of the film thickness was found on the values of both of these parameters.  相似文献   

11.
Interfacial control of uni-directional SiCf/SiC composites were performed by EPD, and their mechanical properties at room temperature were evaluated. The effect of the thickness of carbon interphase on SiC fibers by EPD on mechanical properties of uni-directional SiCf/SiC composites was also investigated. The average thickness of carbon coating on SiC fibers increased from 42 nm to 164 nm with an increase in the concentration of colloidal graphite suspension for EPD. Dense SiCf/SiC composites were achieved and their fiber volume fraction was 47–51%. The SiCf/SiC composites had a bending strength of 210–240 MPa. As the thickness of carbon coating was below 100 nm, the SiCf/SiC composites (SC01 and SC02) fractured in almost brittle manner. In contrast, the SiCf/SiC composites (SC03) showed a pseudo-ductile fracture behavior with a large number of fiber pullout as the thickness of carbon coating was above 100 nm. The fracture energy of SC03 was 3–4 times as high as those of SC01 and SC02 and the value was about 1.7 kJ/m2. In consideration of the results of mechanical properties, the thickness of carbon coating on SiC fibers should be at least 100 nm to obtain high-performance SiCf/SiC composites. The fabrication process based on EPD method is expected to be an effective way to control the interfaces of SiCf/SiC composites and to obtain high-performance SiCf/SiC composites.  相似文献   

12.
The purpose of the present work was to investigate the mechanical behavior of metaphosphate glass coatings of the Na2O-CaO-P2O5 system on steel substrates. These coatings may be used as thermal barriers or to give anti-corrosion protection. Coacervates of glasses under consideration were obtained by a coacervation process, from Graham's salt and deposited on aluminized steel substrate. Chemical composition of coacervate phases was improved by the choice of cations and addition of a filler to reduce the residual stresses in glass metal joints due to the thermal expansion coefficient mismatch. The chemical and mechanical properties of both the coating and the interface were studied by energy dispersive spectrometry (EDS) and hardness measurements. It was shown that an alumina layer is formed by the reaction between the phosphates compounds during curing. This layer acts as a barrier for the iron diffusion. The fracture toughness of the glass coating was investigated by Vickers indentations. Inasmuch the cracks are of the Palmqvist form, the Evans and Charles formula holds for calculating KIC. A value near 0.85 MPa m1/2 was found for all the glasses investigated. Residual stress distribution was calculated. The glass coating was in compression and residual stresses were reduced by the interlayer formation. A good adhesion was found since cracks produced by indentation near the glass steel interface propagated in the coating rather than along the interface.  相似文献   

13.
The vigorous interfacial reactions in SiC/Ti-6Al-4V composites at elevated temperatures lead to the deterioration of the mechanical properties of the composites. TiB2 and TiC were selected as potential protective coatings for SiC fibres in titanium-based composites. These coatings were deposited on to fibres by the chemical vapour deposition technique. Comparisons and evaluations have been made of the effectiveness of these ceramics as protective coatings for SiC fibres by incorporating the coated fibres into a Ti-6Al-4V matrix using the diffusion bonding method. Emphasis has been placed on the chemical compatibility of the candidate coating with SiC and Ti-6Al-4V by examining the interfaces of the fibre/coating/matrix using microscopic methods and chemical analysis. A stoichiometric TiB2 coating was found to be stable with SiC and has proved an effective barrier to prevent the SiC fibre from reacting with the Ti-6Al-4V. The TiC coating showed no apparent reaction with a titanium-alloy matrix under the conditions studied, but was found to react with the SiC fibre substrate.  相似文献   

14.
Abstract

Sputtered Ni–TiB2 coatings have been shown to protect Ti–6Al–4V and Inconel 718 substrates from solid particle erosion. However, before new erosion resistant coatings can be efficiently designed, it is essential that the role of mechanical properties in determining erosion resistance be fully understood. In this investigation, nanoindentation techniques were used to quantify the effects of substrate preparation, coating composition, and sputtering process parameters on the elastic moduli and indentation hardness of thin coatings deposited on Ti–6Al–4V and Inconel 718 substrates. The influence of these parameters on coating adhesion was determined using a conventional scratch test. Elastic moduli, indentation hardnesses, and coating adhesion were correlated with erosion behaviour. The erosion resistance of the coatings that exhibited microscopic ductility is dependent on the nodule diameter and coating properties such as hardness, elastic modulus, and fracture toughness.

MST/1697  相似文献   

15.
The validity of indentation tests for the characterization of the mechanical properties of coatings relies greatly on the indentation depth. Deep indentation concludes to unreliable results due to the substrate effect on the measured properties. At shallow depths the size effect can also be an important error factor. The purpose of the present study is the determination of the critical ratio of coating thickness to indentation depth, up to which the substrate properties have a negligible effect on the force versus indentation depth curve and thus on determined mechanical properties of the coating. The analysis required, was conducted using finite element method. A spherical (ball) indenter was used and a three dimensional model of the indenter/coating-substrate system was applied. The effect of the coating to substrate Yield strength ratio, on the critical coating thickness to indentation depth ratio, was investigated for three different coating to substrate Young's modulus ratios. The results of this work provide considerable insight for the determination of the confidence indentation depth during micro-indentation for layered systems with different properties.  相似文献   

16.
Deposition of conductive and nonconductive hard coatings on metallic and ceramic materials by RF-PA-CVD Conductive titanium nitride and nonconductive aluminium oxide layers were deposited on conductive and nonconductive substrates by a RF-PA-CVD process. The influence of substrate material, pressure, plasma power and the components of the gas mixture on the layer properties was investigated. TiN coatings with a homogeneous structure could be deposited by using TiCl4 as precursor. The properties of the layer are strongly influenced by the substrate material. An increasing pressure causes a faster deposition rate and a higher chlorine content. A lower chlorine content and at the same time a faster deposition rate can be achieved by increasing the r.f. power. Aluminium and aluminium oxide layers could be deposited on steel and Si3N4 substrates by using AlCl3 as precursor in dependence on the CO2 content in gas mixture. Higher CO2 content facilitates the deposition of aluminium oxide.  相似文献   

17.
In this paper, finite element simulations of spherical indentation of a thin hard film deposited on a soft substrate are carried out. The primary objective of this work is to understand the mechanics of fracture of the film due to formation of cylindrical or circumferential cracks extending inwards from the film surface. Also, the role of plastic yielding in the substrate on the above mechanics is studied. To this end, the plastic zone development in the substrate and its influence on the load versus indentation depth characteristics and the stress distribution in the film are first examined. Next, the energy release rate J associated with cylindrical cracks is computed. The variation of J with indentation depth and crack length is investigated. The results show that for cracks located near the indenter axis and at small indentation depth, J decreases over a range of crack lengths, which implies stability of crack growth. This regime vanishes as the location of the crack from the axis increases, particularly for a substrate with low yield strength. Finally, a method for combining experimental load versus indentation depth data with simulation results in order to obtain the fracture energy of the film is proposed.  相似文献   

18.
The mechanical properties of various inorganic organic films were studied and compared in order to investigate the relation between structural modifications and the mechanical behavior. Films were prepared by a sol–gel process and spin-coated on silicon substrate. The organic–inorganic hybrid is composed of a mixture of colloidal silica and organosiloxane precursors. The functionality of the organosiloxane and the nature of its organic part have been modified to obtain a structural change. Mechanical properties were studied using nanoindentation. Analysis of the strength evolution as a function of depth of indentation shows the layer hardness and elastic modulus. Moreover, coating and interface toughness and residual stresses were determined by a time resolved study of energy dissipation during indentation. The structural changes were determined using liquid and solid 29Si NMR spectroscopy. Quantity of partially and fully condensed species in the deposited sol and final solid are discussed in relation to the mechanical properties.  相似文献   

19.
Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load–displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for inhibiting the flexural stress.  相似文献   

20.
Mullite-SiC nanocomposites are synthesized by introducing surface modified sol-gel mullite coated SiC particles in the matrix and densification and associated microstructural features of such precursor are reported. Nanosize SiC (average size 180 nm) surface was first provided with a mullite precursor coating which was characterized by the X-ray analysis and TEM. An average coating thickness of 120 nm was obtained on the SiC particles. The green compacts obtained by cold isostatic pressing were sintered in the range 1500–1700°C under pressureless sintering in the N2 atmosphere. The percentage of the theoretical sintered density decreases with increase in SiC content. A maximum sintered density of 97% was achieved for mullite-5 vol.% SiC. The fractograph of the sintered composite showed a highly dense, fine grained microstructure with the SiC particles uniformly distributed along the grains as well as at the grain boundaries inside the mullite. The Vicker’s microhardness of mullite-5 vol.% SiC composite was measured as 1320 kg/mm2 under an applied indentation load of 500 g. This value gradually decreased with an increase in SiC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号