首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Feature matching is the most basic and pervasive problem in computer vision and it has become a primary component in big data analytics. Many tools have been developed for extracting and matching features in video streams and image frames. However, one of the most basic tools, that is, a tool for simply visualizing matched features for the comparison and evaluation of computer vision algorithms is not generally available, especially when dealing with a large number of matching lines. We introduce VisFM, an integrated visual analysis system for comprehending and exploring image feature matchings. VisFM presents a matching view with an intuitive line bundling to provide useful insights regarding the quality of matched features. VisFM is capable of showing a summarization of the features and matchings through group view to assist domain experts in observing the feature matching patterns from multiple perspectives. VisFM incorporates a series of interactions for exploring the feature data. We demonstrate the visual efficacy of VisFM by applying it to three scenarios. An informal expert feedback, conducted by our collaborator in computer vision, demonstrates how VisFM can be used for comparing and analysing feature matchings when the goal is to improve an image retrieval algorithm.  相似文献   

2.
The analysis of protein‐ligand interactions is complex because of the many factors at play. Most current methods for visual analysis provide this information in the form of simple 2D plots, which, besides being quite space hungry, often encode a low number of different properties. In this paper we present a system for compact 2D visualization of molecular simulations. It purposely omits most spatial information and presents physical information associated to single molecular components and their pairwise interactions through a set of 2D InfoVis tools with coordinated views, suitable interaction, and focus+context techniques to analyze large amounts of data. The system provides a wide range of motifs for elements such as protein secondary structures or hydrogen bond networks, and a set of tools for their interactive inspection, both for a single simulation and for comparing two different simulations. As a result, the analysis of protein‐ligand interactions of Molecular Simulation trajectories is greatly facilitated.  相似文献   

3.
    
To complement the currently existing definitions and conceptual frameworks of visual analytics, which focus mainly on activities performed by analysts and types of techniques they use, we attempt to define the expected results of these activities. We argue that the main goal of doing visual analytics is to build a mental and/or formal model of a certain piece of reality reflected in data. The purpose of the model may be to understand, to forecast or to control this piece of reality. Based on this model‐building perspective, we propose a detailed conceptual framework in which the visual analytics process is considered as a goal‐oriented workflow producing a model as a result. We demonstrate how this framework can be used for performing an analytical survey of the visual analytics research field and identifying the directions and areas where further research is needed.  相似文献   

4.
The Curriculum Vitae (CV, also referred to as “résumé”) is an established representation of a person's academic and professional history. A typical CV is comprised of multiple sections associated with spatio‐temporal, nominal, hierarchical, and ordinal data. The main task of a recruiter is, given a job application with specific requirements, to compare and assess CVs in order to build a short list of promising candidates to interview. Commonly, this is done by viewing CVs in a side‐by‐side fashion. This becomes challenging when comparing more than two CVs, because the reader is required to switch attention between them. Furthermore, there is no guarantee that the CVs are structured similarly, thus making the overview cluttered and significantly slowing down the comparison process. In order to address these challenges, in this paper we propose “CV3”, an interactive exploration environment offering users a new way to explore, assess, and compare multiple CVs, to suggest suitable candidates for specific job requirements. We validate our system by means of domain expert feedback whose results highlight both the efficacy of our approach and its limitations. We learned that CV3 eases the overall burden of recruiters thereby assisting them in the selection process.  相似文献   

5.
6.
    
Visual data analysis can be envisioned as a collaboration of the user and the computational system with the aim of completing a given task. Pursuing an effective system‐user integration, in which the system actively helps the user to reach his/her analysis goal has been focus of visualization research for quite some time. However, this problem is still largely unsolved. As a result, users might be overwhelmed by powerful but complex visual analysis systems which also limits their ability to produce insightful results. In this context, guidance is a promising step towards enabling an effective mixed‐initiative collaboration to promote the visual analysis. However, the way how guidance should be put into practice is still to be unravelled. Thus, we conducted a comprehensive literature research and provide an overview of how guidance is tackled by different approaches in visual analysis systems. We distinguish between guidance that is provided by the system to support the user, and guidance that is provided by the user to support the system. By identifying open problems, we highlight promising research directions and point to missing factors that are needed to enable the envisioned human‐computer collaboration, and thus, promote a more effective visual data analysis.  相似文献   

7.
The majority of visualizations on the web are still stored as raster images, making them inaccessible to visually impaired users. We propose a deep‐neural‐network‐based approach that automatically recognizes key elements in a visualization, including a visualization type, graphical elements, labels, legends, and most importantly, the original data conveyed in the visualization. We leverage such extracted information to provide visually impaired people with the reading of the extracted information. Based on interviews with visually impaired users, we built a Google Chrome extension designed to work with screen reader software to automatically decode charts on a webpage using our pipeline. We compared the performance of the back‐end algorithm with existing methods and evaluated the utility using qualitative feedback from visually impaired users.  相似文献   

8.
Multidimensional data sets are common in many domains, and dimensionality reduction methods that determine a lower dimensional embedding are widely used for visualizing such data sets. This paper presents a novel method to project data onto a lower dimensional space by taking into account the order statistics of the individual data points, which are quantified by their depth or centrality in the overall set. Thus, in addition to conveying relative distances in the data, the proposed method also preserves the order statistics, which are often lost or misrepresented by existing visualization methods. The proposed method entails a modification of the optimization objective of conventional multidimensional scaling (MDS) by introducing a term that penalizes discrepancies between centrality structures in the original space and the embedding. We also introduce two strategies for visualizing lower dimensional embeddings of multidimensional data that takes advantage of the coherent representation of centrality provided by the proposed projection method. We demonstrate the effectiveness of our visualization with comparisons on different kinds of multidimensional data, including categorical and multimodal, from a variety of domains such as botany and health care.  相似文献   

9.
Parallel simulation codes often suffer from performance bottlenecks due to network congestion, leaving millions of dollars of investments underutilized. Given a network topology, it is critical to understand how different applications, job placements, routing schemes, etc., are affected by and contribute to network congestion, especially for large and complex networks. Understanding and optimizing communication on large‐scale networks is an active area of research. Domain experts often use exploratory tools to develop both intuitive and formal metrics for network health and performance. This paper presents Tree Scope , an interactive, web‐based visualization tool for exploring network traffic on large‐scale fat‐tree networks. Tree Scope encodes the network topology using a tailored matrix‐based representation and provides detailed visualization of all traffic in the network. We report on the design process of Tree Scope , which has been received positively by network researchers as well as system administrators. Through case studies of real and simulated data, we demonstrate how Tree Scope 's visual design and interactive support for complex queries on network traffic can provide experts with new insights into the occurrences and causes of congestion in the network.  相似文献   

10.
We introduce the generalized nonogram, an extension of the well‐known nonogram or Japanese picture puzzle. It is not based on a regular square grid but on a subdivision (arrangement) with differently shaped cells, bounded by straight lines or curves. To generate a good, clear puzzle from a filled line drawing, the arrangement that is formed for the puzzle must meet a number of criteria. Some of these relate to the puzzle and some to the geometry. We give an overview of these criteria and show that a puzzle can be generated by an optimization method like simulated annealing. Experimentally, we analyze the convergence of the method and the remaining penalty score on several input pictures along with various other design options.  相似文献   

11.
    
Information visualization is a rapidly evolving field with a growing volume of scientific literature and texts continually published. To keep abreast of the latest developments in the domain, survey papers and state‐of‐the‐art reviews provide valuable tools for managing the large quantity of scientific literature. Recently, a survey of survey papers was published to keep track of the quantity of refereed survey papers in information visualization conferences and journals. However, no such resources exist to inform readers of the large volume of books being published on the subject, leaving the possibility of valuable knowledge being overlooked. We present the first literature survey of information visualization books that addresses this challenge by surveying the large volume of books on the topic of information visualization and visual analytics. This unique survey addresses some special challenges associated with collections of books (as opposed to research papers) including searching, browsing and cost. This paper features a novel two‐level classification based on both books and chapter topics examined in each book, enabling the reader to quickly identify to what depth a topic of interest is covered within a particular book. Readers can use this survey to identify the most relevant book for their needs amongst a quickly expanding collection. In indexing the landscape of information visualization books, this survey provides a valuable resource to both experienced researchers and newcomers in the data visualization discipline.  相似文献   

12.
    
Modelling relationship between entities in real‐world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real‐world data sets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them.  相似文献   

13.
Analyzing complex data is a non‐linear process that alternates between identifying discrete facts and developing overall assessments and conclusions. In addition, data analysis rarely occurs in solitude; multiple collaborators can be engaged in the same analysis, or intermediate results can be reported to stakeholders. However, current data‐driven communication tools are detached from the analysis process and promote linear stories that forego the hierarchical and branching nature of data analysis, which leads to either too much or too little detail in the final report. We propose a conceptual design for integrated data‐driven reporting that allows for iterative structuring of insights into hierarchies linked to analytic provenance and chosen analysis views. The hierarchies become dynamic and interactive reports where collaborators can review and modify the analysis at a desired level of detail. Our web‐based Inside Insights system provides interaction techniques to annotate states of analytic components, structure annotations, and link them to appropriate presentation views. We demonstrate the generality and usefulness of our system with two use cases and a qualitative expert review.  相似文献   

14.
While color plays a fundamental role in film design and production, existing solutions for film analysis in the digital humanities address perceptual and spatial color information only tangentially. We introduce VIAN, a visual film annotation system centered on the semantic aspects of film color analysis. The tool enables expert‐assessed labeling, curation, visualization and Classification of color features based on their perceived context and aesthetic quality. It is the first of its kind that incorporates foreground‐background information made possible by modern deep learning segmentation methods. The proposed tool seamlessly integrates a multimedia data management system, so that films can undergo a full color‐oriented analysis pipeline.  相似文献   

15.
Communication‐minded visualizations are designed to provide their audience—managers, decision‐makers, and the public—with new knowledge. Authoring such visualizations effectively is challenging because the audience often lacks the expertise, context, and time that professional analysts have at their disposal to explore and understand datasets. We present a novel summarized line graph visualization technique designed specifically for data analysts to communicate data to decision‐makers more effectively and efficiently. Our summarized line graph reduces a large and detailed dataset of multiple quantitative time‐series into (1) representative data that provides a quick takeaway of the full dataset; (2) analytical highlights that distinguish specific insights of interest; and (3) a data envelope that summarizes the remaining aggregated data. Our summarized line graph achieved the best overall results when evaluated against line graphs, band graphs, stream graphs, and horizon graphs on four representative tasks.  相似文献   

16.
We visualize contours for spatio‐temporal processes to indicate where and when non‐continuous changes occur or spatial bounds are encountered. All time steps are comprised densely in one visualization, with contours allowing to efficiently analyze processes in the data even in case of spatial or temporal overlap. Contours are determined on the basis of deep raycasting that collects samples across time and depth along each ray. For each sample along a ray, its closest neighbors from adjacent rays are identified, considering time, depth, and value in the process. Large distances are represented as contours in image space, using color to indicate temporal occurrence. This contour representation can easily be combined with volume rendering‐based techniques, providing both full spatial detail for individual time steps and an outline of the whole time series in one view. Our view‐dependent technique supports efficient progressive computation, and requires no prior assumptions regarding the shape or nature of processes in the data. We discuss and demonstrate the performance and utility of our approach via a variety of data sets, comparison and combination with an alternative technique, and feedback by a domain scientist.  相似文献   

17.
The usage of deep learning models for tagging input data has increased over the past years because of their accuracy and high‐performance. A successful application is to score sleep stages. In this scenario, models are trained to predict the sleep stages of individuals. Although their predictive accuracy is high, there are still mis classifications that prevent doctors from properly diagnosing sleep‐related disorders. This paper presents a system that allows users to explore the output of deep learning models in a real‐life scenario to spot and analyze faulty predictions. These can be corrected by users to generate a sequence of sleep stages to be examined by doctors. Our approach addresses a real‐life scenario with absence of ground truth. It differs from others in that our goal is not to improve the model itself, but to correct the predictions it provides. We demonstrate that our approach is effective in identifying faulty predictions and helping users to fix them in the proposed use case.  相似文献   

18.
    
Physically based rendering is a well‐understood technique to produce realistic‐looking images. However, different algorithms exist for efficiency reasons, which work well in certain cases but fail or produce rendering artefacts in others. Few tools allow a user to gain insight into the algorithmic processes. In this work, we present such a tool, which combines techniques from information visualization and visual analytics with physically based rendering. It consists of an interactive parallel coordinates plot, with a built‐in sampling‐based data reduction technique to visualize the attributes associated with each light sample. Two‐dimensional (2D) and three‐dimensional (3D) heat maps depict any desired property of the rendering process. An interactively rendered 3D view of the scene displays animated light paths based on the user's selection to gain further insight into the rendering process. The provided interactivity enables the user to guide the rendering process for more efficiency. To show its usefulness, we present several applications based on our tool. This includes differential light transport visualization to optimize light setup in a scene, finding the causes of and resolving rendering artefacts, such as fireflies, as well as a path length contribution histogram to evaluate the efficiency of different Monte Carlo estimators.  相似文献   

19.
The analysis of financial assets’ correlations is fundamental to many aspects of finance theory and practice, especially modern portfolio theory and the study of risk. In order to manage investment risk, in‐depth analysis of changing correlations is needed, with both high and low correlations between financial assets (and groups thereof) important to identify. In this paper, we propose a visual analytics framework for the interactive analysis of relations and structures in dynamic, high‐dimensional correlation data. We conduct a series of interviews and review the financial correlation analysis literature to guide our design. Our solution combines concepts from multi‐dimensional scaling, weighted complete graphs and threshold networks to present interactive, animated displays which use proximity as a visual metaphor for correlation and animation stability to encode correlation stability. We devise interaction techniques coupled with context‐sensitive auxiliary views to support the analysis of subsets of correlation networks. As part of our contribution, we also present behaviour profiles to help guide future users of our approach. We evaluate our approach by checking the validity of the layouts produced, presenting a number of analysis stories, and through a user study. We observe that our solutions help unravel complex behaviours and resonate well with study participants in addressing their needs in the context of correlation analysis in finance.  相似文献   

20.
External labeling is frequently used for annotating features in graphical displays and visualizations, such as technical illustrations, anatomical drawings, or maps, with textual information. Such a labeling connects features within an illustration by thin leader lines with their labels, which are placed in the empty space surrounding the image. Over the last twenty years, a large body of literature in diverse areas of computer science has been published that investigates many different aspects, models, and algorithms for automatically placing external labels for a given set of features. This state‐of‐the‐art report introduces a first unified taxonomy for categorizing the different results in the literature and then presents a comprehensive survey of the state of the art, a sketch of the most relevant algorithmic techniques for external labeling algorithms, as well as a list of open research challenges in this multidisciplinary research field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号