首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sets of multiple scalar fields can be used to model many types of variation in data, such as uncertainty in measurements and simulations or time‐dependent behavior of scalar quantities. Many structural properties of such fields can be explained by dependencies between different points in the scalar field. Although these dependencies can be of arbitrary complexity, correlation, i.e., the linear dependency, already provides significant structural information. Existing methods for correlation analysis are usually limited to positive correlation, handle only local dependencies, or use combinatorial approximations to this continuous problem. We present a new approach for computing and visualizing correlated regions in sets of 2‐dimensional scalar fields. This paper describes the following three main contributions: (i) An algorithm for hierarchical correlation clustering resulting in a dendrogram, (ii) a generalization of topological landscapes for dendrogram visualization, and (iii) a new method for incorporating negative correlation values in the clustering and visualization. All steps are designed to preserve the special properties of correlation coefficients. The results are visualized in two linked views, one showing the cluster hierarchy as 2D landscape and the other providing a spatial context in the scalar field's domain. Different coloring and texturing schemes coupled with interactive selection support an exploratory data analysis.  相似文献   

2.
When performing queries in web search engines, users often face difficulties choosing appropriate query terms. Search engines therefore usually suggest a list of expanded versions of the user query to disambiguate it or to resolve potential term mismatches. However, it has been shown that users find it difficult to choose an expanded query from such a list. In this paper, we describe the adoption of set‐based text visualization techniques to visualize how query expansions enrich the result space of a given user query and how the result sets relate to each other. Our system uses a linguistic approach to expand queries and topic modeling to extract the most informative terms from the results of these queries. In a user study, we compare a common text list of query expansion suggestions to three set‐based text visualization techniques adopted for visualizing expanded query results – namely, Compact Euler Diagrams, Parallel Tag Clouds, and a List View – to resolve ambiguous queries using interactive query expansion. Our results show that text visualization techniques do not increase retrieval efficiency, precision, or recall. Overall, users rate Parallel Tag Clouds visualizing key terms of the expanded query space lowest. Based on the results, we derive recommendations for visualizations of query expansion results, text visualization techniques in general, and discuss alternative use cases of set‐based text visualization techniques in the context of web search.  相似文献   

3.
We introduce a visual analysis system with GPU acceleration techniques for large sets of trajectories from complex dynamical systems. The approach is based on an interactive Boolean combination of subsets into a Focus+Context phase‐space visualization. We achieve high performance through efficient bitwise algorithms utilizing runtime generated GPU shaders and kernels. This enables a higher level of interactivity for visualizing the large multivariate trajectory data. We explain how our design meets a set of carefully considered analysis requirements, provide performance results, and demonstrate utility through case studies with many‐particle simulation data from two application areas.  相似文献   

4.
Visualization of sentiments and opinions extracted from or annotated in texts has become a prominent topic of research over the last decade. From basic pie and bar charts used to illustrate customer reviews to extensive visual analytics systems involving novel representations, sentiment visualization techniques have evolved to deal with complex multidimensional data sets, including temporal, relational and geospatial aspects. This contribution presents a survey of sentiment visualization techniques based on a detailed categorization. We describe the background of sentiment analysis, introduce a categorization for sentiment visualization techniques that includes 7 groups with 35 categories in total, and discuss 132 techniques from peer‐reviewed publications together with an interactive web‐based survey browser. Finally, we discuss insights and opportunities for further research in sentiment visualization. We expect this survey to be useful for visualization researchers whose interests include sentiment or other aspects of text data as well as researchers and practitioners from other disciplines in search of efficient visualization techniques applicable to their tasks and data.  相似文献   

5.
In many scientific disciplines, the motion of finite‐sized objects in fluid flows plays an important role, such as in brownout engineering, sediment transport, oceanology or meteorology. These finite‐sized objects are called inertial particles and, in contrast to traditional tracer particles, their motion depends on their current position, their own particle velocity, the time and their size. Thus, the visualization of their motion becomes a high‐dimensional problem that entails computational and perceptual challenges. So far, no visualization explored and visualized the particle trajectories under variation of all seeding parameters. In this paper, we propose three coordinated views that visualize the different aspects of the high‐dimensional space in which the particles live. We visualize the evolution of particles over time, showing that particles travel different distances in the same time, depending on their size. The second view provides a clear illustration of the trajectories of different particle sizes and allows the user to easily identify differences due to particle size. Finally, we embed the trajectories in the space‐velocity domain and visualize their distance to an attracting manifold using ribbons. In all views, we support interactive linking and brushing, and provide abstraction through density volumes that are shown by direct volume rendering and isosurface slabs. Using our method, users gain deeper insights into the dynamics of inertial particles in 2D fluids, including size‐dependent separation, preferential clustering and attraction. We demonstrate the effectiveness of our method in multiple steady and unsteady 2D flows.  相似文献   

6.
Hierarchical embeddings, such as HSNE, address critical visual and computational scalability issues of traditional techniques for dimensionality reduction. The improved scalability comes at the cost of the need for increased user interaction for exploration. In this paper, we provide a solution for the interactive visual Focus+Context exploration of such embeddings. We explain how to integrate embedding parts from different levels of detail, corresponding to focus and context groups, in a joint visualization. We devise an according interaction model that relates typical semantic operations on a Focus+Context visualization with the according changes in the level‐of‐detail‐hierarchy of the embedding, including also a mode for comparative Focus+Context exploration and extend HSNE to incorporate the presented interaction model. In order to demonstrate the effectiveness of our approach, we present a use case based on the visual exploration of multi‐dimensional images.  相似文献   

7.
Event sequences and time series are widely recorded in many application domains; examples are stock market prices, electronic health records, server operation and performance logs. Common goals for recording are monitoring, root cause analysis and predictive analytics. Current analysis methods generally focus on the exploration of either event sequences or time series. However, deeper insights are gained by combining both. We present a visual analytics approach where users can explore both time series and event data simultaneously, combining visualization, automated methods and human interaction. We enable users to iteratively refine the visualization. Correlations between event sequences and time series can be found by means of an interactive algorithm, which also computes the presence of monotonic effects. We illustrate the effectiveness of our method by applying it to real world and synthetic data sets.  相似文献   

8.
Multi‐Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination, provide large amounts of visual and geometric information. In this survey, we provide an up‐to‐date integrative view of MLICs as a mean to gain insight on objects through the analysis and visualization of the acquired data. After a general overview of MLICs capturing and storage, we focus on the main approaches to produce representations usable for visualization and analysis. In this context, we first discuss methods for direct exploration of the raw data. We then summarize approaches that strive to emphasize shape and material details by fusing all acquisitions in a single enhanced image. Subsequently, we focus on approaches that produce relightable images through intermediate representations. This can be done both by fitting various analytic forms of the light transform function, or by locally estimating the parameters of physically plausible models of shape and reflectance and using them for visualization and analysis. We finally review techniques that improve object understanding by using illustrative approaches to enhance relightable models, or by extracting features and derived maps. We also review how these methods are applied in several, main application domains, and what are the available tools to perform MLIC visualization and analysis. We finally point out relevant research issues, analyze research trends, and offer guidelines for practical applications.  相似文献   

9.
The analysis of ocean and atmospheric datasets offers a unique set of challenges to scientists working in different application areas. These challenges include dealing with extremely large volumes of multidimensional data, supporting interactive visual analysis, ensembles exploration and visualization, exploring model sensitivities to inputs, mesoscale ocean features analysis, predictive analytics, heterogeneity and complexity of observational data, representing uncertainty, and many more. Researchers across disciplines collaborate to address such challenges, which led to significant research and development advances in ocean and atmospheric sciences, and also in several relevant areas such as visualization and visual analytics, big data analytics, machine learning and statistics. In this report, we perform an extensive survey of research advances in the visual analysis of ocean and atmospheric datasets. First, we survey the task requirements by conducting interviews with researchers, domain experts, and end users working with these datasets on a spectrum of analytics problems in the domain of ocean and atmospheric sciences. We then discuss existing models and frameworks related to data analysis, sense‐making, and knowledge discovery for visual analytics applications. We categorize the techniques, systems, and tools presented in the literature based on the taxonomies of task requirements, interaction methods, visualization techniques, machine learning and statistical methods, evaluation methods, data types, data dimensions and size, spatial scale and application areas. We then evaluate the task requirements identified based on our interviews with domain experts in the context of categorized research based on our taxonomies, and existing models and frameworks of visual analytics to determine the extent to which they fulfill these task requirements, and identify the gaps in current research. In the last part of this report, we summarize the trends, challenges, and opportunities for future research in this area. (see http://www.acm.org/about/class/class/2012 )  相似文献   

10.
There are many methods proposed for generating polycube polyhedrons, but it lacks the study about the possibility of generating polycube polyhedrons. In this paper, we prove a theorem for characterizing the necessary condition for the skeleton graph of a polycube polyhedron, by which Steinitz's theorem for convex polyhedra and Eppstein's theorem for simple orthogonal polyhedra are generalized to polycube polyhedra of any genus and with non‐simply connected faces. Based on our theorem, we present a faster linear algorithm to determine the dimensions of the polycube shape space for a valid graph, for all its possible polycube polyhedrons. We also propose a quadratic optimization method to generate embedding polycube polyhedrons with interactive assistance. Finally, we provide a graph‐based framework for polycube mesh generation, quadrangulation, and all‐hex meshing to demonstrate the utility and applicability of our approach.  相似文献   

11.
In the field of organic electronics, understanding complex material morphologies and their role in efficient charge transport in solar cells is extremely important. Related processes are studied using the Ising model and Kinetic Monte Carlo simulations resulting in large ensembles of stochastic trajectories. Naive visualization of these trajectories, individually or as a whole, does not lead to new knowledge discovery through exploration. In this paper, we present novel visualization and exploration methods to analyze this complex dynamic data, which provide succinct and meaningful abstractions leading to scientific insights. We propose a morphology abstraction yielding a network composed of material pockets and the interfaces, which serves as backbone for the visualization of the charge diffusion. The trajectory network is created using a novel way of implicitly attracting the trajectories to the skeleton of the morphology relying on a relaxation process. Each individual trajectory is then represented as a connected sequence of nodes in the skeleton. The final network summarizes all of these sequences in a single aggregated network. We apply our method to three different morphologies and demonstrate its suitability for exploring this kind of data.  相似文献   

12.
We present a novel visualization concept for DNA origami structures that integrates a multitude of representations into a Dimension and Scale Unifying Map (DimSUM). This novel abstraction map provides means to analyze, smoothly transition between, and interact with many visual representations of the DNA origami structures in an effective way that was not possible before. DNA origami structures are nanoscale objects, which are challenging to model in silico. In our holistic approach we seamlessly combine three‐dimensional realistic shape models, two‐dimensional diagrammatic representations, and ordered alignments in one‐dimensional arrangements, with semantic transitions across many scales. To navigate through this large, two‐dimensional abstraction map we highlight locations that users frequently visit for certain tasks and datasets. Particularly interesting viewpoints can be explicitly saved to optimize the workflow. We have developed DimSUM together with domain scientists specialized in DNA nanotechnology. In the paper we discuss our design decisions for both the visualization and the interaction techniques. We demonstrate two practical use cases in which our approach increases the specialists’ understanding and improves their effectiveness in the analysis. Finally, we discuss the implications of our concept for the use of controlled abstraction in visualization in general.  相似文献   

13.
Modelling relationship between entities in real‐world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real‐world data sets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them.  相似文献   

14.
3D representations are potentially useful under many circumstances, but suffer from long known perception and interaction challenges. Current immersive technologies, which combine stereoscopic displays and natural interaction, are being progressively seen as an opportunity to tackle this issue, but new guidelines and studies are still needed, especially regarding information visualization. Many proposed approaches are impractical for actual usage, resulting in user discomfort or requiring too much time or space. In this work, we implement and evaluate an alternative data exploration metaphor where the user remains seated and viewpoint change is only realisable through physical movements. All manipulation is done directly by natural mid‐air gestures, with the data being rendered at arm's reach. The virtual reproduction of the analyst's desk aims to increase immersion and enable tangible interaction with controls and two dimensional associated information. A comparative user study was carried out against a desktop‐based equivalent, exploring a set of 9 perception and interaction tasks based on previous literature and a multidimensional projection use case. We demonstrate that our prototype setup, named VirtualDesk, presents excellent results regarding user comfort and immersion, and performs equally or better in all analytical tasks, while adding minimal or no time overhead and amplifying user subjective perceptions of efficiency and engagement. Results are also contrasted to a previous experiment employing artificial flying navigation, with significant observed improvements.  相似文献   

15.
While color plays a fundamental role in film design and production, existing solutions for film analysis in the digital humanities address perceptual and spatial color information only tangentially. We introduce VIAN, a visual film annotation system centered on the semantic aspects of film color analysis. The tool enables expert‐assessed labeling, curation, visualization and Classification of color features based on their perceived context and aesthetic quality. It is the first of its kind that incorporates foreground‐background information made possible by modern deep learning segmentation methods. The proposed tool seamlessly integrates a multimedia data management system, so that films can undergo a full color‐oriented analysis pipeline.  相似文献   

16.
Several visual representations have been developed over the years to visualize molecular structures, and to enable a better understanding of their underlying chemical processes. Today, the most frequently used atom‐based representations are the Space‐filling, the Solvent Excluded Surface, the Balls‐and‐Sticks, and the Licorice models. While each of these representations has its individual benefits, when applied to large‐scale models spatial arrangements can be difficult to interpret when employing current visualization techniques. In the past it has been shown that global illumination techniques improve the perception of molecular visualizations; unfortunately existing approaches are tailored towards a single visual representation. We propose a general illumination model for molecular visualization that is valid for different representations. With our illumination model, it becomes possible, for the first time, to achieve consistent illumination among all atom‐based molecular representations. The proposed model can be further evaluated in real‐time, as it employs an analytical solution to simulate diffuse light interactions between objects. To be able to derive such a solution for the rather complicated and diverse visual representations, we propose the use of regression analysis together with adapted parameter sampling strategies as well as shape parametrization guided sampling, which are applied to the geometric building blocks of the targeted visual representations. We will discuss the proposed sampling strategies, the derived illumination model, and demonstrate its capabilities when visualizing several dynamic molecules.  相似文献   

17.
We generalize N‐rooks, jittered, and (correlated) multi‐jittered sampling to higher dimensions by importing and improving upon a class of techniques called orthogonal arrays from the statistics literature. Renderers typically combine or “pad” a collection of lower‐dimensional (e.g. 2D and 1D) stratified patterns to form higher‐dimensional samples for integration. This maintains stratification in the original dimension pairs, but looses it for all other dimension pairs. For truly multi‐dimensional integrands like those in rendering, this increases variance and deteriorates its rate of convergence to that of pure random sampling. Care must therefore be taken to assign the primary dimension pairs to the dimensions with most integrand variation, but this complicates implementations. We tackle this problem by developing a collection of practical, in‐place multi‐dimensional sample generation routines that stratify points on all t‐dimensional and 1‐dimensional projections simultaneously. For instance, when t=2, any 2D projection of our samples is a (correlated) multi‐jittered point set. This property not only reduces variance, but also simplifies implementations since sample dimensions can now be assigned to integrand dimensions arbitrarily while maintaining the same level of stratification. Our techniques reduce variance compared to traditional 2D padding approaches like PBRT's (0,2) and Stratified samplers, and provide quality nearly equal to state‐of‐the‐art QMC samplers like Sobol and Halton while avoiding their structured artifacts as commonly seen when using a single sample set to cover an entire image. While in this work we focus on constructing finite sampling point sets, we also discuss potential avenues for extending our work to progressive sequences (more suitable for incremental rendering) in the future.  相似文献   

18.
19.
Process mining enables organizations to analyze data about their (business) processes. Visualization is key to gaining insight into these processes and the associated data. Process visualization requires a high‐quality graph layout that intuitively represents the semantics of the process. Process analysis additionally requires interactive filtering to explore the process data and process graph. The ideal process visualization therefore provides a high‐quality, intuitive layout and preserves the mental map of the user during the visual exploration. The current industry standard used for process visualization does not satisfy either of these requirements. In this paper, we propose a novel layout algorithm for processes based on the Sugiyama framework. Our approach consists of novel ranking and order constraint algorithms and a novel crossing minimization algorithm. These algorithms make use of the process data to compute stable, high‐quality layouts. In addition, we use phased animation to further improve mental map preservation. Quantitative and qualitative evaluations show that our approach computes layouts of higher quality and preserves the mental map better than the industry standard. Additionally, our approach is substantially faster, especially for graphs with more than 250 edges.  相似文献   

20.
Origin‐destination (OD) trails describe movements across space. Typical visualizations thereof use either straight lines or plot the actual trajectories. To reduce clutter inherent to visualizing large OD datasets, bundling methods can be used. Yet, bundling OD trails in urban traffic data remains challenging. Two specific reasons hereof are the constraints implied by the underlying road network and the difficulty of finding good bundling settings. To cope with these issues, we propose a new approach called Route Aware Edge Bundling (RAEB). To handle road constraints, we first generate a hierarchical model of the road‐and‐trajectory data. Next, we derive optimal bundling parameters, including kernel size and number of iterations, for a user‐selected level of detail of this model, thereby allowing users to explicitly trade off simplification vs accuracy. We demonstrate the added value of RAEB compared to state‐of‐the‐art trail bundling methods on both synthetic and real‐world traffic data for tasks that include the preservation of road network topology and the support of multiscale exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号