首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between cyclic deformation, slip-mode and dislocation structures is investigated in 316LN stainless steel (with 0.07–0.22 wt% Nitrogen) subjected to low cycle fatigue at temperatures in the range 300–873 K and at a 0.6 % strain amplitude. Irrespective of the nitrogen content, cyclic softening/saturation occupied a large fraction of fatigue life at temperatures <773 K. The end-of-life dislocation structures (e.g. dislocation cells, planar slip-bands) characterizing the cyclic softening/saturation belong to wavy/mixed/planar slip-modes of deformation. On the other hand at temperatures ≥773 K, similar dislocation structures are noticed to be associated with significant cyclic strengthening with limited softening. The differences in the above deformation behavior is found to be controlled not by the nature of slip-mode but by the consequences of dynamic strain aging occurrence (e.g. significant cyclic strengthening and pronounced serrations) which are noticed to vary in the temperature range 573–873 K. Maximum fatigue life is observed at 0.11–0.14 wt% N that induced mixed mode of deformation.  相似文献   

2.
In this paper, Low cycle fatigue (LCF) behavior of 316LN austenitic stainless steel alloyed with 0.078 and 0.22 wt% nitrogen, designated as N078 and N022 steels respectively, is compared in the temperature range 300–873 K by strain controlled fatigue tests at ± 0.6% strain amplitude. Interestingly, N022 steel showed continuous decrease in fatigue life with temperature in contrast to N078 steel which showed maximum in fatigue life at 573 K. Drastic reduction in fatigue life is observed in both the steels in the temperature range 673–873 K and has been attributed to the occurrence of dynamic strain aging. Both steels exhibited manifestations (for ex.: decrease in plastic strain and anomalous stress response with increase in temperature) corresponding to the occurrence of Dynamic Strain Ageing (DSA) in the above temperature range. Under all testing conditions, fracture surfaces revealed transgranular crack initiation and transgranular crack propagation.  相似文献   

3.
In this study, the influence of cyclic strain amplitude on the evolution of cyclic stress–strain response and the associated cyclic deformation mechanisms in 316LN stainless steel with varying nitrogen content (0.07 to 0.22 wt pct) is reported in the temperature range 773 K to 873 K (500 °C to 600 °C). Two mechanisms, namely dynamic strain aging and secondary cyclic hardening, are found to strongly influence the cyclic stress response. Deformation substructures associated with both the mechanisms showed planar mode of deformation. These mechanisms are observed to be operative over certain combinations of temperature and strain amplitude. For strain amplitudes >0.6 pct, wavy or mixed mode of deformation is noticed to suppress both the mechanisms. Cyclic stress–strain curves revealed both single and dual-slope behavior depending on the test temperature. Increase in nitrogen content is found to increase the tendency toward planar mode of deformation, while increase in strain amplitude leads to transition from planar slip bands to dislocation cell/wall structure formation, irrespective of the nitrogen content in 316LN stainless steel.  相似文献   

4.
Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes (±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin–Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.  相似文献   

5.
The low cycle fatigue(LCF)behavior of P92 martensitic steel was investigated under different controlled strain amplitudes at room and high temperatures(873K).The cyclic stress responses at all temperatures and strain amplitudes exhibited obviously rapid softening behavior at the early stage of fatigue life,and there was no saturated stage at high temperature.The fracture surfaces of the fatigue samples were observed by scanning electron microscopy(SEM)and optical microscopy.It was shown that crack initiation and propagation occurred transgranularly at both testing temperatures.A typical character was the high density crack branches or secondary cracks along fatigue striations at high temperature,which initiated from the oxidized inclusions and grain boundaries.Further investigation by transmission electron microscopy(TEM)showed that the softening behavior was attributed to the microstructure evolution during fatigue life,such as annihilation of dislocations and migration of martensite laths as well as carbide coarsening,especially for samples tested at high temperature.  相似文献   

6.
This article is concerned with the cyclic properties of 316L-type austenitic stainless at 300 and 77 K. The role of nitrogen alloying and of the temperature decrease is examined during low-cycle fatigue (LCF) and fatigue crack propagation. Fatigue resistance is enhanced by the addition of nitrogen in steel at both test temperatures. The results are discussed on the basis of micro-structural observations. Planar slip of dislocations is found in the nitrogen-containing steel and is favored by a decrease in test temperature. To some extent, the influence of interstitial nitrogen on the fatigue properties is related to its role in stabilizing austenite observed during cooling as well as during straining.  相似文献   

7.
The aim of the present paper is to study the low cycle fatigue and creep-fatigue interaction behavior of modified 9Cr-1Mo ferritic steel weld joint. Total axial strain controlled continuous cycling tests were conducted between 773 K and 873 K and at strain amplitudes ±0.25%, ±0.4%, ±0.6% and ±1%. Hold tests were also conducted at +0.6% and 823 K and 873 K temperatures to study the creep-fatigue interaction behavior of the weld joint. The alloy exhibited cyclic softening from first cycle onwards irrespective of the loading conditions. Failure location in the weld joint was correlated to the test parameters. Detailed replica study conducted on all the failed specimens revealed that most of the failures occurred in one side of the heat affected zone (HAZ) of the weld joint. Strain localization in the soft zone of the HAZ and subsurface creep cavity formation in this region and their linkage had caused enhanced crack propagation that translated into lower fatigue life of the weld joint at high temperatures. Type IV mode of failure was identified to be operative under tensile hold and high temperatures. The alloy was also found to be compressive dwell sensitive and it was ascertained that the lower life under compression hold compared to tension hold was due to the deleterious effect of oxidation.  相似文献   

8.
In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.  相似文献   

9.
Symmetrical push-pull low-cycle fatigue (LCF) tests were performed on INCONEL 718 (IN718) containing 12, 29, 60, and 100 ppm B at 650 °C. The results showed that all the alloys experienced a relatively short period of initial cyclic hardening at low strain amplitudes, followed by a regime of saturation or slightly continuous cyclic softening. The initial cyclic hardening phase decreased with increasing strain amplitudes, and disappeared at the high strain amplitudes. A serrated flow was observed in the plastic regions of cyclic stress-strain hysteresis loops. The saturated cyclic stress amplitude at a given strain amplitude was highest for the alloy with 60 ppm B, and lowest for the alloy with 12 ppm B. The LCF lifetime increased with increasing B concentration up to 60 ppm, and then decreased as the B content increased from 60 to 100 ppm. Fractographic analysis suggested that the fracture mode changed from intergranular to transgranular cracking as the B concentration increased. The characteristic deformation microstructures produced by LCF tests at 650 °C, examined via transmission electron microscopy, were regularly spaced arrays of planar deformation bands on {111} slip planes in all four alloys. A ladderlike structure was observed in some local regions in the alloy with 12 ppm B. Heavily deformed planar deformation bands were observed in the fatigued specimens with 100 ppm B. The mechanism of improvement in the LCF life of IN718 due to B addition is discussed.  相似文献   

10.
This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.  相似文献   

11.
The present study aims at understanding the effect of various arc welding processes on the evolution of microstructure, mechanical properties, residual stresses and distortion in 9 mm thick type 316LN austenitic stainless steel weld joints. Weld joints of type 316LN stainless steel were fabricated by three different arc welding processes which were commonly employed in the nuclear industry. All the weld joints passed radiographic examination. Microstructural characterization was done using optical and scanning electron microscope. Volume fraction of δ-ferrite was lowest in the A-TIG weld joint. The A-TIG welded joint exhibited adequate strength and maximum impact toughness values in comparison to that of weld joints made by SMAW and FCAW processes. The A-TIG weld joint was found to exhibit lowest residual stresses and distortion compared to that of other welding processes. This was attributed to lower weld metal volume and hence reduced shrinkage in the A-TIG weld joint compared to that of weld joints made by FCAW and SMAW processes which involved v-groove with filler metal addition. Therefore, type 316LN stainless steel A-TIG weld joint consisting of lower δ-ferrite, adequate strength, high impact toughness, lower residual stresses and distortion was suited better for elevated temperature service compared to that of SMAW and FCAW weld joints.  相似文献   

12.
This paper gives a brief review of the efforts made to study the effects of cold rolling on low cycle fatigue (LCF) behavior of stainless steels, titanium alloy Timetal 834 and Ni-Fe based Super alloy IN 718 at different temperatures and different strain amplitudes. Low Cycle Fatigue tests on cold worked 316L stainless steel at various temperatures from room temperature to 923K have been reported. In all tests the effect of 20% prior cold work(PCW) on LCF behavior of type 316L (N) stainless steel had been studied at 873K under total axial strain controlled mode in air at strain amplitudes from ±0.25% to ±1.0%. Fatigue life in the solution annealed condition was similar to that of the PCW material at higher strain amplitudes (≥0.5%) while at lower strain amplitudes the PCW material exhibited longer life. The influence of PCW on LCF behavior of type 304 and AISI 304LN stainless steel was studied at various temperatures and it was observed that the fatigue life was strongly dependent on prior cold work, temperature, and strain amplitude employed. Cold rolling of the titanium alloy Timetal 834 and age hardenable Ni-Fe-based superalloy IN 718 has been found to cause marked enhancement in LCF life at low strain amplitude and eliminate the bilinearity from the Coffin-Manson(C-M) relationship. Work carried on this aspect, however is very limited particularly in the case of Titanium alloys and Ni-Fe based Superalloy IN 718  相似文献   

13.
Aluminum alloy 6061 was subjected to equal channel angular pressing (ECAP) using two different processing routes BC and C, to study the evolution of the microstructure and the effect of low cycle fatigue (LCF) on the resultant microstructure. Specimens subjected to ECAP and fatigue cycling were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns of the material after each pass of ECAP and after interrupted LCF tests were analyzed. Single-line approximation method of analysis was used to obtain microstructural parameters from peak broadening observed in XRD profiles. Increase in dislocation density till saturation after pass 2 and marginal changes thereafter for successive passes were observed. From the LCF tests on specimens subjected to three ECAP passes at two strain amplitudes of 0.5 and 1.0 %, cyclic stress response up to fatigue failure were obtained. The solutionized specimens exhibited continuous strain hardening at both strain amplitudes. The ECAP processed material fatigued at 0.5 % strain amplitude exhibited stable cyclic stress response, whereas the material fatigued at 1.0 % strain amplitude exhibited cyclic softening. The LCF behaviour was the same for the material processed through both BC and C routes. The TEM images of specimens and the associated selected area electron diffraction patterns indicated ultra fine grain structure after three passes of ECAP. However, some amount of grain coarsening was observed after LCF cycling.  相似文献   

14.
The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.  相似文献   

15.
An investigation was made on the strain-controlled low-cycle fatigue (LCF) of K40S cobalt-base superalloy at 900 °C in ambient atmosphere. The results show that K40S alloy possesses high LCF resistance in comparison with X-40 alloy. Under the testing conditions in this study, K40S alloy exhibits a cyclic stress response of initial hardening followed by softening. The cyclic stress response behavior has been attributed to dislocation-dislocation interactions and dislocation-precipitate interactions. The high response stress can lead to a large stress concentration at locations where inelastic strains of high amplitude accumulate, which account for the decreasing fatigue life with increasing strain rate. The well-distributed carbide particles are the “secondary” crack initiation sites. The secondary crack initiation relaxes the stress concentration at the crack tip, reducing the driving force of crack propagation. High-temperature LCF failure of K40S alloy results from the interaction of the mechanical fatigue and environmental oxidation.  相似文献   

16.
The cyclic deformation behavior of SAF 2507 superduplex stainless steel (SDSS) was studied under constant plastic-strain amplitudes. The cyclic hardening/softening curves show initial hardening, followed by softening and, finally, saturation behavior. Two regimes can be differentiated in the cyclic stress-strain curve (CSSC) of SDSS. The transition point at which the cyclic strain-hardening rate changes is identified to be ɛ p/2=7 × 10−3. Transmission electron microscopy (TEM) results on dislocation structures suggested that there is a close relationship between the CSSC, hardening/softening curves, and the dislocation substructure evolution. In the low-plastic-strain-amplitude regime of the CSSC, the dislocation activity in the austenite grains is found to be higher than that in the ferrite grains. At higher plastic strain amplitudes, low-energy dislocation structures are found in the ferrite grains, while clusters and bundles of dislocations can be observed in the austenite grains. Strain localization due to formation of these structures resulted in a decrease in the cyclic strain-hardening rate within the high-plastic-strain-amplitude regime. Dislocation substructure evolution is also used to explain the shape of the hardening/softening curve.  相似文献   

17.
Mod.9Cr-1Mo ferritic-martensitic steel is the material chosen for the steam generator of the Prototype Fast Breeder Reactor being built at Kalpakkam, India. The use of sodium as a heat transfer medium for Liquid Metal Fast Breeder Reactors (LMFBRs) necessitates a comprehensive understanding of the effects of dynamic sodium on the Low Cycle Fatigue (LCF) behaviour of structural components. Moreover welds being the weak links in any structure, it is necessary to evaluate the LCF behaviour of joints in sodium environment, more so in Mod.9Cr-1Mo steel because of the well established Type — IV cracking in this material. With this aim in view, a programme has been initiated to evaluate the LCF properties of weld joints of this steel in dynamic sodium environment. A facility has been developed in-house for mechanical property evaluation in dynamic sodium. LCF tests conducted in flowing sodium environment at 823 and 873 K showed a similar trend in cyclic stress response in air and sodium environments exhibiting a continuous cyclic softening behaviour. The fatigue lives are significantly improved in sodium environment when compared to the data obtained under identical testing conditions in air environment. The lack of oxidation in sodium environment is considered to be responsible for the delayed crack initiation and consequent increase in fatigue life. Comparison with RCC-MR code shows that the design curve based on air tests is conservative.  相似文献   

18.
Strain-controlled low-cycle fatigue (LCF) tests and microstructural evaluation were performed on a friction-stir-welded 6061Al-T651 alloy with varying welding parameters. Friction stir welding (FSW) resulted in fine recrystallized grains with uniformly distributed dispersoids and dissolution of primary strengthening precipitates β″ in the nugget zone (NZ). Two low-hardness zones (LHZs) appeared in the heat-affected zone (HAZ) adjacent to the border between the thermomechanically-affected zone (TMAZ) and HAZ, with the width decreasing with increasing welding speed. No obvious effect of the rotational rate on the LHZs was observed. Cyclic hardening of the friction-stir-welded joints was appreciably stronger than that of base metal (BM), and it also exhibited a two-stage character where cyclic hardening of the friction-stir-welded 6061Al-T651 alloy at higher strain amplitudes was initially stronger followed by an almost linear increase of cyclic stress amplitudes on the semilog scale. Fatigue life, cyclic yield strength, cyclic strain hardening exponent, and cyclic strength coefficient all increased with increasing welding speed, but were nearly independent of the rotational rate. Most friction-stir-welded joints failed along the LHZs and exhibited a shear fracture mode. Fatigue crack initiation was observed to occur from the specimen surface, and crack propagation was mainly characterized by the characteristic fatigue striations. Some distinctive tiremark patterns arising from the interaction between the hard dispersoids/inclusions and the relatively soft matrix in the LHZ under cyclic loading were observed to be present in-between the fatigue striations.  相似文献   

19.
疲劳裂纹的萌生与扩展容易导致压力容器及管道的严重疲劳失效.因此就设备的安全可靠性而言,非常有必要对疲劳裂纹扩展过程进行监测,并对疲劳损伤程度进行评估.本文针对316LN不锈钢材料进行疲劳实验研究,利用直流电位法测量实验中的裂纹长度,得到了材料的疲劳裂纹扩展曲线.利用声发射技术对疲劳裂纹扩展过程进行监测,通过声发射多参数分析对疲劳损伤状态进行评价,同时建立了声发射参数与线弹性断裂力学参数之间的关系,并进行寿命预测.研究表明:声发射能够对316LN不锈钢的疲劳裂纹损伤进行有效评估,声发射累积参数如累积计数、累积能量和累积幅值曲线上的转折点标志着疲劳裂纹进入快速扩展阶段,这可以为工程人员提供失效预警;声发射波形和频谱分析表明,噪声信号的幅值较小且信号持续时间较长,信号包含的频率成分比较复杂,而裂纹扩展信号是突发型信号,衰减较快,信号频率主要集中在80~170 kHz范围内;声发射计数率、能量率和幅值率与应力强度因子幅度以及疲劳裂纹扩展速率之间呈线性关系,裂纹长度预测结果与实测值接近.本研究工作对于工程结构的疲劳失效预警和剩余寿命预测具有重要意义.   相似文献   

20.
采用径向应变控制研究了Z3CN20-09M奥氏体不锈钢在室温和350℃高温下的低周疲劳行为.Z3CN20-09M不锈钢表现为先硬化后软化的循环特性,但硬化的程度取决于温度和应变幅.随着应变幅的增加,Z3CN20-09M钢的低周疲劳循环寿命逐渐减短,而相同循环次数下应力幅也随之提高.温度对Z3CN20-09M钢的低周疲劳行为影响较大,与室温相比高温下的循环硬化程度更高,相同应变幅下高温的低周疲劳寿命也高于常温下的寿命.通过疲劳实验的原位观察发现,奥氏体内的滑移面、夹杂物及奥氏体和铁素体两相的界面是疲劳裂纹可能的形核位置,奥氏体和铁素体两相的不协调变形使相界处产生应力集中,导致疲劳裂纹容易沿两相界面扩展.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号