首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, as a new measurement method to estimate the change of material condition, the simplified ultrasonic CT system, which uses the information of three directions, that is, 90°, + 45° and −45° about inspection plane is proposed. Use of simplified CT system has two merits: Firstly, the measurement time is very short compared with general CT. Secondly, it can detect sensitively small defect in vertical or slant direction about inspection plane because the obtained image is CT image calculated from three directions. From these merits, this method can be considered as an effective method to evaluate material conditions. The basic performance of the proposed method was confirmed through several specimens with several simple defects. In order to confirm the applicability of actual NDT, several kinds of welded specimens are investigated. The result showed that the CT image obtained had good agreement with actual defect of specimens.  相似文献   

2.
本文采用5 kW快速横流CO2激光器对45#钢薄板进行了激光焊接,分析了在激光焊接工艺对其焊接接头组织及硬度的影响。结果表明,45#钢薄板激光焊接接头组织主要由下贝氏体和少量侧板条铁素体或少量马氏体组成。随着激光功率的提高,侧板条铁素体逐渐增多,马氏体逐渐减少;随着焊接速度的提高,焊接接头组织中侧板条铁素体减少,马氏体增多。激光功率和扫描速度均提高时,热影响区最高硬度提高,接头硬度均高于母材,无明显软化区。  相似文献   

3.
Double-sided double arc welding (DSAW), a high efficiency method requiring no back chipping for welding thick plate of high-strength low-alloy steel was used in this study. Gas metal arc welding is employed for backing run and filler passes. The effect of DSAW on preheating temperature is investigated. Meanwhile, numerical simulation has been performed to predict transient temperatures, which are in good agreement with the experimental results. The critical stress in DSAW without preheating is 528.31 MPa, while in conventional welding with 100 °C preheating temperature, it is 393.44 MPa. The higher critical stress implies that the samples in DSAW without preheating have better cold crack resistance than those in conventional welding with 100 °C preheating temperature. Y-slit type cracking test indicates that the samples welded by double-sided double arc demonstrate better cold crack resistance than conventional welding at the same preheating temperature. Therefore, DSAW can realize welding thick plate of high-strength low-alloy steel with lower preheating temperature or even without preheating.  相似文献   

4.
A series of welds were made by friction stir welding (FSW) under different welding and rotation speeds. A 2D ultimate tensile strength (UTS) map was developed based on various experimental data to predict the UTS of friction stir welded AA2024 alloy joints. The accuracy of the UTS map was evaluated by comparing the estimated UTS with the corresponding experimental results from the FSW of the same material available in the open literature. Analytical models were developed to estimate the peak temperature and grain size in the nugget zone. The predicted optimal peak temperature and welding and rotation speeds for AA2024 were within the windows of 400–465 °C, 175–350 mm/min and 800–1,200 rpm, respectively, under which the joint tensile strength could be higher than 458 MPa (about 94.6 % of the base metal) and the estimated average grain sizes in the nugget zone were about 2–3.9 μm.  相似文献   

5.

The effect of different welding parameters on the mechanical properties and tensile behavior of tungsten inert gas (TIG) welded joints was analyzed. Four different groove angles were chosen, 60°, 70°, 80° and 90°, to ascertain the tendency of microstructure formation and quality of the weld. Mechanical properties were assessed in the terms of Vickers HV1 hardness. Microanalysis of test samples produced using different current 165 A, 180 A, 200 A with same groove angle of 90° was done in fusion, partially melted, and heat affected zone; all the images showed good penetration and clear transition from one to following zone. The transverse tensile tests were accomplished on the welded joints to evaluate influence of welding parameters and groove geometry to the joint tensile strength and its behavior during exploitation. It was verified that the tensile strength of the welds is closely related to the welding parameters. The chosen 180 A welding current ensured highest tensile strength of test samples; the same as proper selection of groove angle (90°) provides good fusion and high quality of major welds. The results revealed that the weld penetration depends on welding current.

  相似文献   

6.
In order to meet the requirement of welded seams location and seam tracking, vision sensor based on circular laser trajectory has been developed and three-dimensional information of welded seams can be calculated in real- time, escaping from shortcomings of less information, explain ambiguity and single tracking direction for “spot” or “line” laser vision sensors. We put forward three vital angles (cone angle α, deflection angle β, and off-axis angle γ) so that welded seams could be described using three-dimensional information. On this basis, a mathematical model of depth recovery according to “circle–depth relation” algorithm is constructed. The relation of depth values and off-axis angle γ under gas tungsten arc welding (GTAW) experiment condition is addressed by real experiment and the characteristic points of welded seams is described and located. Mean square error (MSE) was used to analyze the recovery precision. The results show: (1) Depth recovery for butt joint with V-groove (60°), butt joint with gap, lap joint, corner joint (120°), circular welded seams and ramp welded seams are realized and the recovery accuracy is compulsory for GTAW process; (2) Welded seams can be located very well using proposed vision sensor based on circular laser trajectory; and proposed vision sensor manifested a promising result with high precision and high efficiency.  相似文献   

7.
对新型汽轮机焊接转子材料25Cr2Ni2MoV焊接接头及其母材进行应变控制的低周疲劳试验,并进行了相应的断裂位置统计和循环变形特征分析。试验结果表明,焊接削弱了焊接接头的疲劳强度,受到结构非均匀性和各部分力学性能的相对不匹配等因素的影响,焊接接头的断裂位置体现出明显的应变水平依赖性;焊接接头和母材在循环变形过程中均表现出循环软化特性,且存在明显的拉压不对称性,拉压不对称程度随应变水平的增加而增加;与母材相比,焊接接头表现出更加明显的平均应力松弛现象,且平均应力绝对值随着循环周次不断减小最后趋于常值。  相似文献   

8.
The two aims of this study are first, determining the optimal welding process parameters by using the finite element simulation and second, determining the optimal tempering temperature by evaluating the mechanical properties of friction welded part for manufacturing large rotor shaft. Inertia welding was conducted in order to make the large rotor shaft of turbo charger for low speed marine diesel engine. The rotor shaft is composed of the 310mm diameter disk and the 140mm diameter shaft. Since diameters of disk and shaft are very different, the integration using friction welding reduces manufacturing cost compared with the forming process of which a disk and shaft are forged into one body. Finite element simulation was performed, because inertial welding friction process depended on many process parameters, including axial force, initial revolution speed and energy, amount of upset, and working time. It is expected that this modeling will significantly reduce the number of experimental trials needed when determining the optimal welding parameters. Inertia welding was carried out with optimal process parameter conditions obtained from the simulation results. Welded joint part, made by friction welding, had very poor mechanical properties, and so it required heat treatment. The base material used in the investigation was SFCMV1 (SANYO special steel, high strength low alloy Cr-Mo steel) of 140mm diameter. In the study, heat treatment test carried out quenching (950 °C, 4hr, oil cooling) and tempering (690–720 °C, 6hr, air cooling) for friction welding specimens. The various tests, including microstructure observation, tensile, hardness, and fatigue tests, were conducted to evaluate the mechanical properties under various heat treatment conditions after inertia welding.  相似文献   

9.

In consideration of uncertainties of material characteristics and its welding and forming process, an interval strain energy density method for predicting fatigue life of dissimilar lightweight metal welded joints was presented in this paper. Firstly, the mechanical performance parameters and fatigue properties of welded joints with parental material aluminum alloy 5083H111 and 5754 were obtained by experimental work. Based on the interval number approach, the interval relationship between the elastic and plastic strain energy density and fatigue life was constructed, including lower and upper interval bounds. Then, a finite element model of the dissimilar lightweight metal cross welded joint was generated to calculate the stress-strain response curve under cyclic loadings through the non-linear finite element analysis. The predicted lifetime and failure location for the cross welded joint based on the interval strain energy density method agreed well with the tested results.

  相似文献   

10.
A study on a vision sensor system for tracking the I-Butt weld joints   总被引:1,自引:0,他引:1  
In this study, a visual sensor system for weld seam tracking the I-butt weld joints in GMA welding was constructed. The sensor system consists of a CCD camera, a diode laser with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and arc light. In order to obtain the enhanced image, quantitative relationship between laser intensity and iris opening was investigated. Throughout the repeated experiments, the shutter speed was set at 1/1000 second for minimizing the effect of spatters on the image, and therefore the image without the spatter traces could be obtained. Region of interest was defined from the entire image and gray level of the searched laser stripe was compared to that of weld line. The differences between these gray levels lead to spot the position of weld joint using central difference method. The results showed that, as long as weld line is within ±15° from the longitudinal straight line, the system constructed in this study could track the weld line successfully. Since the processing time is no longer than 0.05 sec, it is expected that the developed method could be adopted to high speed welding such as laser welding.  相似文献   

11.
This paper describes a study on laser butt welding of 4 and 2 mm SUS301L stainless steel and a detailed analysis of welding joints. The gap tolerance of butt joint was also studied with optimized process parameters. The electrolytic etching in 10 % oxalate solution was used to test the intergranular corrosion of the 4 mm SUS301L welded joint. Fatigue property of the 2 mm SUS301L welded joint was tested under the conditional cycle times of 1?×?107. Using optical microscopy, the changes of metallurgical microstructure in the weld zone of 4 mm SUS301L were also studied. It has been found that laser butt welding of 4 mm SUS301L is able to achieve sound metallurgical morphology and high strength weld joint when the butt gap is within certain tolerance. The weld joint also has good resistance to intergranular corrosion and has a fatigue limit of 310 MPa.  相似文献   

12.
李春林  谢猛 《电子机械工程》2010,26(3):52-55,64
介绍了15—5PH马氏体沉淀硬化不锈钢材料的特点和应用场合,着重论述了该材料的真空电子束焊接工艺试验。试件经X射线探伤显示焊缝质量满足国军标I级,焊接接头在室温下的力学性能指标均满足设计和使用要求,从而验证了15—5PH不锈钢材料具有优异的真空电子柬焊接性能。该工艺方法已成功应用于某产品天线座转台的研制。  相似文献   

13.
智能微型化的医用器械在医疗行业逐渐被人们所重视。这些产品主要是由一些微型电子元器件构成,其中器件核心芯片部分的点线连接结构需通过高精密焊接工作完成。因此焊点和被焊芯线的识别精度要求越来越高,两者是否能准确有效识别直接影响焊接的最终质量。为高质量完成焊接过程中的焊点和芯线识别,本文主要使用电子显微仪器结合上位机VS17+OpenCV软硬结合的方法完成图像处理,对所采集图像中的焊点和芯线端头进行识别。以焊点和芯线端头的颜色及几何特征作为分析对象,经预处理后再通过各自特征分析突出感兴趣区域部分,通过特定颜色阈值选取方式和对比度提升算法完成焊点和芯线端头的分割过程,要求所测量焊点及芯线端头的识别精度误差≤0.1 mm。实验结果表明:本文印刷电路板(PCB)焊点及芯线端头的识别算法能有效识别焊点及芯线端头图中所在位置并显示其像素坐标值;经数据整理分析,本文算法的识别精度误差均控制在允许的误差范围内。  相似文献   

14.
Reverse dual-rotation friction stir welding (RDR-FSW) is a novel FSW technology in which the tool pin and the assisted shoulder rotates reversely, thus it has the capability to obtain appropriate welding conditions through adjusting the rotating tool pin and surrounding assisted shoulder independently. In the present study, a RDR-FSW tool system was designed and successfully applied to weld high strength aluminum alloy 2219-T6, and the effects of welding speed on microstructures and mechanical properties were investigated in detail. At a constant rotation speed of 800 rpm for both the rotating tool pin and the reversely rotating assisted shoulder, defect-free joints were obtained at welding speeds ranging from 50 to 150 mm/min, while a cavity defect appeared at the three-phase confluction on the advancing side when the welding speed increased to 200 mm/min. With increasing of the welding speed, the width of the softened region decreased, but the minimum microhardness value increased gradually. When compared with the joints welded by the conventional FSW, there is only a minor variation of the Vickers hardness across the stirring zone in the joint welded by the RDR-FSW. The maximum tensile strength 328 MPa (73.7 % of the base material) was obtained at the welding speed of 150 mm/min, while the elongation reached its maximum 7.0 % (60.9 % of the base material) at the welding speed of 100 mm/min. All defect-free joints were fractured at the weakest region with the minimum Vickers hardness, while for the joint with cavity defects the fracture occurred at the defect location. The tensile fracture was in the ductile fracture mode.  相似文献   

15.
将高匹配的焊接接头抽象为软夹硬力学不均匀体,并运用材料应力幅的变化定义一个新的损伤变量,运用损伤力学的方法对高匹配的焊接接头力学不均匀体在低周疲劳载茶下的损伤行为进行研究。研究结果发现对于高匹配的焊接接头,在低周疲劳的载荷条件下,随着中间高强度的焊缝宽度的增加,焊接接头在断裂时的循环次数将下降,而接头中损伤的发展则在加快。  相似文献   

16.
The hybrid metal extrusion and bonding (HYB) process is a new solid-state joining technique developed for aluminum alloys. By the use of filler material addition and plastic deformation sound joints can be produced at operating temperatures below 400 °C. The HYB process has the potential to compete with commonplace welding technologies, but its comparative advantages have not yet been fully explored. Here, we present for the first time the results from an exploratory investigation of the mechanical integrity of a 4-mm AA6082-T6 HYB joint, covering both hardness, tensile and Charpy V-notch testing. The joint is found to be free from defects like pores, internal cavities and kissing bonds, yet a soft heat-affected zone (HAZ) is still present. The joint yield strength is 54% of that of the base material, while the corresponding joint efficiency is 66%. The indications are that the HYB process may compete or even outperform conventional welding techniques for aluminum in the future after it has been fully developed and optimized.  相似文献   

17.
In this study, a new welding technology of dissimilar materials, Cr-based P92 steels and Ni-based Alloy 617 is introduced and demonstrated to investigate its reliability. Firstly, multi-pass dissimilar metal welding between P92 steel and Alloy 617 was performed using DCEN TIG welding technology, buttering welding technique and a narrow gap groove. After welding, in order to understand characteristics of the dissimilar metal welds, metallurgical micro-structures analysis by optical observation and static tensile strength assessment of the dissimilar welded joints were conducted at 700°C.  相似文献   

18.
采用搅拌摩擦焊对AZ31B镁合金板材进行了焊接试验,研究了搅拌头旋转速度、焊接速度和搅拌头轴肩下压量对焊接接头成形质量的影响。结果表明,搅拌头转速过快或焊接速度过慢时,焊缝会出现局部过热甚至熔化现象;反之,当搅拌头转速不够或焊接速度过快时,材料不能充分流动,会形成隧道型缺陷或表面沟槽。当搅拌头轴肩下压量过小时,焊缝内部组织疏松或出现孔洞、隧道型缺陷,焊缝表面出现沟槽,甚至使焊缝金属液外溢;搅拌头轴肩下压量过大,会造成摩擦力及搅拌头前移阻力增大、焊缝凹陷及出现飞边。当搅拌头转速为1200~1500r/min、焊速为30~60mm/min,搅拌头轴肩下压量为1.5~2.0mm时,可得表面成形良好、内部无孔洞和隧道的焊缝。  相似文献   

19.
短裂纹尺寸一般都在几个微米到几十个微米之间,已低于目前工业CT的最小分辨率,无法被检测出来。基于CT仿真系统,利用结构实体几何模型,设计了一种短裂纹的模拟方法以及其仿真投影数据的获取方法。首先仿真高于实际尺寸数倍的短裂纹群,以达到CT仿真系统的扫描精度,扫描获取该短裂纹群的CT投影数据;之后把该图像数据利用像素合并法缩小到实际尺寸,然后把缩小的CT图像合并,此时便得到了实际尺寸的短裂纹群CT仿真投影图像。利用该结果可以进行下一步的CT重建和疲劳寿命分析等方面的研究。试验证明该方法能得到较为真实的短裂纹群CT投影数据。  相似文献   

20.
作为一种新型焊接方法,局部真空电子束焊接常被用于制造厚大的奥氏体不锈钢焊接接头,而该类接头的焊接残余应力和变形问题受到广泛关注。对板厚40mm的SUS310S不锈钢局部真空电子束焊接的对接接头进行了研究,并利用光学显微镜表征接头的组织形貌,利用显微硬度计测量接头的硬度分布,采用盲孔法装置和三坐标测量仪测量了接头的残余应力与面外变形。同时,基于ABAQUS有限元软件平台,通过编写用户子程序开发了一种复合热源模型来模拟局部真空电子束焊接过程中的热输入。采用所开发的"热-弹-塑性有限元"计算方法,模拟了接头在局部真空电子束焊条件下的残余应力与变形,模拟结果与试验结果吻合良好,验证了所开发的"热-弹-塑性有限元方法"的有效性。同时基于数值模拟结果,还详细讨论了局部真空电子束焊厚板对接接头的残余应力分布与焊接变形特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号