首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have demonstrated that non-visual arrestins function as adaptors in clathrin-mediated endocytosis to promote agonist-induced internalization of the beta2-adrenergic receptor (beta2AR). Here, we characterized the effects of arrestins and other modulators of clathrin-mediated endocytosis on down-regulation of the beta2AR. In COS-1 and HeLa cells, non-visual arrestins promote agonist-induced internalization and down-regulation of the beta2AR, whereas dynamin-K44A, a dominant-negative mutant of dynamin that inhibits clathrin-mediated endocytosis, attenuates beta2AR internalization and down-regulation. In HEK293 cells, dynamin-K44A profoundly inhibits agonist-induced internalization and down-regulation of the beta2AR, suggesting that receptor internalization is critical for down-regulation in these cells. Moreover, a dominant-negative mutant of beta-arrestin, beta-arrestin-(319-418), also inhibits both agonist-induced receptor internalization and down-regulation. Immunofluorescence microscopy analysis reveals that the beta2AR is trafficked to lysosomes in HEK293 cells, where presumably degradation of the receptor occurs. These studies demonstrate that down-regulation of the beta2AR is in part due to trafficking of the beta2AR via the clathrin-coated pit endosomal pathway to lysosomes.  相似文献   

2.
We report a serendipitous discovery that extends the impressive catalog of reporter functions performed by green fluorescent protein (GFP) or its derivatives. When two GFP molecules are brought into proximity, changes in the relative intensities of green fluorescence emitted upon excitation at 395 vs. 475 nm result. These spectral changes provide a sensitive ratiometric index of the extent of self-association that can be exploited to quantitatively image homo-oligomerization or clustering processes of GFP-tagged proteins in vivo. The method, which we term proximity imaging (PRIM), complements fluorescence resonance energy transfer between a blue fluorescent protein donor and a GFP acceptor, a powerful method for imaging proximity relationships between different proteins. However, unlike fluorescence resonance energy transfer (which is a spectral interaction), PRIM depends on direct contact between two GFP modules, which can lead to structural perturbations and concomitant spectral changes within a module. Moreover, the precise spatial arrangement of the GFP molecules within a given dimer determines the magnitude and direction of the spectral change. We have used PRIM to detect FK1012-induced dimerization of GFP fused to FK506-binding protein and clustering of glycosylphosphatidylinositol-anchored GFP at cell surfaces.  相似文献   

3.
We recently reported that a beta2-adrenergic receptor (beta2AR) mutant, Y326A, defective in its ability to sequester in response to agonist stimulation was a poor substrate for G protein-coupled receptor kinase (GRK)-mediated phosphorylation; however, its ability to be phosphorylated and sequestered could be restored by overexpressing GRK2 [Ferguson et al. (1995) J. Biol. Chem. 270, 24782]. In the present report, we tested the ability of each of the known GRKs (GRK1-6) to phosphorylate and rescue the sequestration of the Y326A mutant in HEK-293 cells. We demonstrate that in addition to GRK2, GRK3-6 can phosphorylate the Y326A mutant and rescue its sequestration; however, GRK1 was totally ineffective in rescuing either the phosphorylation or the sequestration of the mutant receptor. We found that the agonist-dependent rescue of Y326A mutant phosphorylation by GRK2, -3, and -5 was associated with the agonist-dependent rescue of sequestration. In contrast, overexpression of GRK4 and -6 led mainly to agonist-independent phosphorylation of the Y326A mutant accompanied by increased basal receptor sequestration. Our results demonstrate that phosphorylation per se, but not the interaction with a specific GRK, is required to facilitate beta2AR sequestration.  相似文献   

4.
The long isoform of the rat thyrotropin-releasing hormone receptor (TRHR) was modified by the addition of a vesicular stomatitis virus (VSV) epitope tag and green fluorescent protein (GFP). VSV-TRHR-GFP bound TRH with affinity similar to that of the unmodified receptor and stimulated [3H]inositol phosphate production. A clone stably expressing VSV-TRHR-GFP at some 120,000 copies/cell was selected to visualize this receptor during cellular exposure to TRH. Internalization was detected within 3-5 min after treatment with 1 x 10(-7) M TRH, with dramatic reductions in plasma membrane localization achieved within 10-15 min. The TRHR antagonist/inverse agonist chlordiazepoxide competitively inhibited internalization. Hyperosmotic sucrose inhibited internalization of VSV-TRHR-GFP, measured both by intact cell [3H]TRH binding studies and by confocal microscopy. Now TRH caused a redistribution of VSV-TRHR-GFP to highly punctate but plasma membrane-delineated foci. Pretreatment with the microtubule-disrupting agent nocodazole allowed internalization of the VSV-TRHR-GFP construct but only into vesicles that remained in close apposition to the plasma membrane. Covisualization of VSV-TRHR-GFP and Texas Red transferrin initially indicated entirely separate localizations. After exposure to TRH substantial amounts of VSV-TRHR-GFP were present in vesicles overlapping those containing Texas Red transferrin. Such results demonstrate the G protein-coupling capacity and provide real time visualization of the processes of internalization of a TRH-receptor-GFP construct in response to agonist.  相似文献   

5.
Long-term stimulation of the beta 2-adrenergic receptor (beta 2AR) leads to an internalization and degradation of the receptor. This down-regulation of the beta 2AR number contributes to the desensitization of the adenylyl cyclase activity induced by chronic exposure to agonists. It was proposed that two tyrosine residues (Tyr-350 and Tyr-354) located in the cytoplasmic tail of the beta 2AR play a crucial role in agonist-induced down-regulation. In addition to perturbation of the down-regulation, the substitution of these tyrosines for alanines also led to a functional uncoupling of the receptor from Gs [Valiquette et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5089-5093]. To further characterize the relative contribution of Tyr-350 and Tyr-354 to the receptor interaction with Gs and agonist-promoted down-regulation, both tyrosines were individually replaced by alanines and mutant receptors expressed in CHW cells. We show here that mutation of Tyr-350 but not that of Tyr-354 significantly decreased the ability of the beta 2AR to be functionally coupled to Gs and thereby to stimulate the adenylyl cyclase. Moreover, in contrast to the double tyrosine mutation, neither of the single-point mutations affected the agonist-induced down-regulation pattern. These data suggest that the presence of either Tyr-350 or Tyr-354 is sufficient to maintain normal agonist-induced down-regulation whereas the integrity of Tyr-350 is required for an appropriate coupling to Gs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The ability of a system to regulate its responsiveness in the presence of a continuous stimulus, often termed desensitization, has been extensively characterized for the beta2-adrenergic receptor (beta2AR). beta2AR signalling is rapidly attenuated through receptor phosphorylation and subsequent binding of the protein beta-arrestin. Ultimately the receptor undergoes internalization, and although the molecular mechanism is unclear, receptor phosphorylation and beta-arrestin binding have been implicated in this processs. Here we report that beta-arrestin and arrestin-3, but not visual arrestin, promote beta2AR internalization and bind with high affinity directly and stoichiometrically to clathrin, the major structural protein of coated pits. Moreover, beta-arrestin/arrestin chimaeras that are defective in either beta2AR or clathrin binding show a reduced ability to promote beta2AR endocytosis. Immunofluorescence microscopy of intact cells indicates an agonist-dependent colocalization of the beta2AR and beta-arrestin with clathrin. These results show that beta-arrestin functions as an adaptor in the receptor-mediated endocytosis pathway, and suggest a general mechanism for regulating the trafficking of G-protein-coupled receptors.  相似文献   

8.
9.
10.
BACKGROUND: NS-21 is under development for the treatment of urinary frequency and urinary incontinence. The purpose of this study was to investigate the effects of NS-21 and its active metabolite, RCC-36, on lower urinary tract function in an experimental rat model of urinary frequency. METHODS: Cystometrograms were recorded in anesthetized rats with bilaterally transected hypogastric nerves. All drugs were administered intraduodenally. RESULTS: In sham-operated rats, NS-21 (> or = 50 mg/kg) significantly increased the bladder capacity without significantly decreasing micturition pressure, while RCC-36 (100 mg/kg) significantly increased bladder capacity, and at a dose of > or = 30 mg/kg, also caused a decrease in micturition pressure. This increase in bladder capacity appeared at lower doses of both NS-21 and RCC-36 in the hypogastric nerve-transected rats. Propiverine (100 mg/kg) increased bladder capacity and at > or = 30 mg/kg, decreased micturition pressure in both sham-operated and nerve-transected rats. Oxybutynin (100 mg/kg) and atropine (30 mg/kg) decreased the micturition pressure in both sham-operated and nerve-transected rats without increasing the bladder capacity, while a similar anticholinergic calcium antagonist, terodiline (100 mg/kg) had no effect on bladder capacity in either sham-operated or nerve-transected rats. Flavoxate (500 mg/kg) significantly increased bladder capacity without significantly decreasing micturition pressure in both sham-operated and nerve-transected rats, while 50 mg/kg of verapamil significantly increased bladder capacity without significantly decreasing the micturition pressure in nerve-transected rats. CONCLUSIONS: NS-21 and RCC-36 increased bladder capacity at lower doses in hypogastric nerve-transected rats than in sham-operated rats. Furthermore, NS-21 increased the bladder capacity without suppressing micturition pressure, suggesting that NS-21 may be a more effective therapeutic drug than propiverine, oxybutynin or flavoxate for the treatment of urinary frequency and urinary incontinence.  相似文献   

11.
A threonine to isoleucine polymorphism at amino acid 164 in the fourth transmembrane spanning domain of the beta 2-adrenergic receptor (beta 2AR) is known to occur in the human population. The functional consequences of this polymorphism to catecholamine signaling in relevant cells or to end-organ responsiveness, however, are not known. To explore potential differences between the two receptors, site-directed mutagenesis was carried out to mimic the polymorphism. Transgenic FVB/N mice were then created overexpressing wild-type (wt) beta 2AR or the mutant Ile-164 receptor in a targeted manner in the heart using a murine alpha myosin heavy chain promoter. The functional properties of the two receptors were then assessed at the level of in vitro cardiac myocyte signaling and in vivo cardiac responses in intact animals. The expression levels of these receptors in the two lines chosen for study were approximately 1200 fmol/mg protein in cardiac membranes, which represents a approximately 45-fold increase in expression over endogenous beta AR. Myocyte membrane adenylyl cyclase activity in the basal state was significantly lower in the Ile-164 mice (19.5 +/- 2.7 pmol/min/mg) compared with wt beta 2AR mice (35.0 +/- 4.1 pmol/min/mg), as was the maximal isoproterenol-stimulated activity (49.8 +/- 7.8 versus 77.1 +/ 7.3 pmol/min/mg). In intact animals, resting heart rate (441 +/- 21 versus 534 +/- 17 bpm) and dP/dtmax (10,923 +/- 730 versus 15,308 +/- 471 mmHg/sec) were less in the Ile-164 mice as compared with wt beta 2AR mice. Similarly, the physiologic responses to infused isoproterenol were notably less in the mutant expressing mice. Indeed, these values, as well as other contractile parameters, were indistinguishable between Ile-164 mice and nontransgenic littermates. Taken together, these results demonstrate that the Ile-164 polymorphism is substantially dysfunctional in a relevant target tissue, as indicated by depressed receptor coupling to adenylyl cyclase in myocardial membranes and impaired receptor mediated cardiac function in vivo. Under normal homeostatic conditions or in circumstances where sympathetic responses are compromised due to diseased states, such as heart failure, this impairment may have important pathophysiologic consequences.  相似文献   

12.
Arrestins have been shown to act as adaptor proteins that mediate the interaction of G protein-coupled receptors with the endocytic machinery. In this study, the role of arrestin-3 in receptor internalization was investigated by constructing different arrestin-3 minigenes that could potentially act as dominant negative inhibitors of arrestin function. Expression of arrestin-3 proteins containing amino acids 1-320 or 201-409 resulted in the inhibition of beta2-adrenergic receptor internalization in HEK-293 cells by approximately 40%. Both of these arrestins were diffusely localized within the cytoplasm of transfected cells, were unable to mediate redistribution of receptors to clathrin-coated pits, and did not localize to coated pits in either the presence or absence of receptor and agonist. Arrestin-3(1-320), but not arrestin-3(201-409), bound to light-activated phosphorylated rhodopsin with an affinity comparable with that of wild-type arrestin-3. In contrast, expression of arrestin-3 proteins composed of only the clathrin binding domain, arrestin-3(284-409), and arrestin-3(290-409) resulted in the constitutive localization of these arrestins to coated pits. Arrestin-3(284-409) and arrestin-3(290-409) acted as dominant negative inhibitors of wild-type arrestin function, inhibiting receptor internalization by 70 and 30%, respectively. Carboxyl-terminal deletions of arrestin-3 retained the ability to promote internalization until residues amino-terminal to amino acid 350 were deleted, suggesting that residues in this region also compose part of the clathrin binding domain in addition to the major binding site between residues 371-379. These studies characterize at least two distinct mechanisms, competition for either receptor or clathrin binding, by which dominant negative arrestins inhibit receptor internalization and further define residues within arrestin-3 that constitute the clathrin binding domain.  相似文献   

13.
Transgenic mice overexpressing the human beta 2-adrenergic receptor gene were compared with wild mice type in terms of cardiac function, using a modified work-performing isolated murine heart preparation and on-line computer analysis. A preload-dependent experiment was performed, in which venous return was gradually increased in 5 mmHg increments from 5 mmHg to 25 mmHg. At each preload, aortic flow, left atrial pressure and aortic pressure were measured in all hearts, and from these parameters stroke volume, contractility, and cardiac index (cardiac output divided by body weight in g) were calculated and compared between groups. At increasing preload levels, the heart rates ranged from 322 beats/min (+/-29) to 369 beats/min (+/-39) in control mice and from 469 beats/min (+/-36) to 540 beats/min (+/-39) in transgenic mice. Cardiac index increased from 138 microliters/min/g (+/-13) and 48 microliters/min/g (+/-5) for transgenic and control mice, respectively at 5 mmHg preload to 262 microliters/min/g (+/-51) and 167 microliters/min/g (+/-15), respectively at 20 mmHg preload. The contractility in the transgenic mice were significantly increased at lower preload levels compared to control mice (1420 mmHg/s +/- 204 v 1187 mmHg/s +/- 127). An increase in myocardial adrenergic receptor density (100-200 fold) leads to significantly higher indices of cardiac function in transgenic mice compared to control mice. The increased heart rate leading to a positive inotropic effect in the hearts of transgenic mice is, at least in part, due to the overexpression of adrenergic receptors. These findings suggest a possible alternative method of establishing a positive chronotropic and inotropic state without the use of pharmacological agents.  相似文献   

14.
The beta2-adrenergic receptor (beta2AR), an important modulator of cardiac inotropy and chronotropy, has significant genetic heterogeneity in the population. Because dysfunctional betaARs play a role in the pathogenesis of the failing ventricle, we tested the hypothesis that beta2AR polymorphisms alter the outcome of congestive heart failure. 259 patients with NYHA functional class II-IV heart failure due to ischemic or dilated cardiomyopathy were genotyped and prospectively followed, with the endpoint defined as death or cardiac transplantation. The allele frequencies between this group and those of 212 healthy controls also were compared and did not differ between the groups. However, those with the Ile164 polymorphism displayed a striking difference in survival with a relative risk of death or cardiac transplant of 4.81 (P < 0.001) compared with those with the wild-type Thr at this position. Age, race, gender, functional class, etiology, ejection fraction, and medication use did not differ between these individuals and those with the wild-type beta2AR, and thus the beta2AR genotype at position 164 was the only clear distinguishing feature between the two groups. The 1-yr survival for Ile164 patients was 42% compared with 76% for patients harboring wild-type beta2AR. In contrast, polymorphisms at amino acid positions 16 (Arg or Gly) or 27 (Gln or Glu), which also alter receptor phenotype, did not appear to have an influence on the course of heart failure. Taken together with cell-based and transgenic mouse results, this study establishes a paradigm whereby genetic variants of key signaling elements can have pathophysiologic consequences within the context of a disease. Furthermore, patients with the Ile164 polymorphism and heart failure may be candidates for earlier aggressive intervention or cardiac transplantation.  相似文献   

15.
We previously showed that substitution of a glycine residue for the palmitoylated cysteine 341 of the human beta2-adrenergic receptor (Gly341beta2AR), increases the basal level of the receptor phosphorylation and reduces its ability to functionally interact with Gs. In the present study, we show that additional mutation of serines 345 and 346 (Ala345,346Gly341beta2AR) restored normal phosphorylation and receptor-Gs coupling, thus suggesting that the increased phosphorylation of this site, rather than the lack of palmitoylation per se, is responsible for the poor coupling of the unpalmitoylated receptor. This is supported by the observation that chemical depalmitoylation of purified beta2AR did not affect the ability of the receptor to stimulate adenylyl cyclase in reconstitution assays. Furthermore, mutation of Ser345,346 in a wild type receptor background (Ala345,346beta2AR) significantly decreased the rate of agonist-promoted desensitization of the receptor-stimulated adenylyl cyclase activity, supporting a role for this phosphorylation site in regulating the functional coupling of the receptor. Since serines 345 and 346 are located in a putative cyclic AMP-dependent protein kinase (PKA) phosphorylation site immediately downstream of the palmitoylated cysteine 341, the hypothesis that the accessibility of this site may be regulated by the receptor palmitoylation state was further assessed in vitro. In membrane phosphorylation assays, Gly341beta2AR was found to be a better substrate for PKA than the wild type receptor, thus supporting the notion that palmitoylation restrains access of the phosphorylation site to the enzyme. Taken together, the data demonstrate that palmitoylation of cysteine 341 controls the phosphorylation state of the PKA site located in the carboxyl tail of the beta2AR and by doing so modulates the responsiveness of the receptor.  相似文献   

16.
Synthesized beta 1- and beta 2-pentapeptide sequences corresponding to published adrenoceptor transmembrane activation site subtypes were investigated in vitro for selectivity in association for drug ligands of known selectivity. Both nuclear magnetic resonance spectroscopy and molecular mechanics demonstrated that structural differences among the corresponding pentapeptide activation-site sequences can explain agonist selectivity. Results suggest the agonists bind across the activation site loop on the second transmembrane alpha-helix by dipole/dipole interactions between a ligand and the peptide. Since electrostatic interactions within the membrane may determine the rate of intercellular ion flux, agonist association across the activation site sequence could thereby decrease electrostatic resistance to positive ion flux into the cell. Interactions between the peptides and the ligands may provide insight into the structures and mechanisms involved in association of ligands for the identical sequences on the beta-adrenoreceptors.  相似文献   

17.
Some forms of G protein-coupled receptor signaling, such as activation of mitogen-activated protein kinase cascade as well as resensitization of receptors after hormone-induced desensitization, require receptor internalization via dynamin-dependent clathrin-coated pit mechanisms. Here we demonstrate that activation of beta2-adrenergic receptors (beta2-ARs) leads to c-Src-mediated tyrosine phosphorylation of dynamin, which is required for receptor internalization. Two tyrosine residues, Tyr231 and Tyr597, are identified as the major phosphorylation sites. Mutation of these residues to phenylalanine dramatically decreases the c-Src-mediated phosphorylation of dynamin following beta2-AR stimulation. Moreover, expression of Y231F/Y597F dynamin inhibits beta2-AR internalization and the isoproterenol-stimulated mitogen-activated protein kinase activation. Thus, agonist-induced, c-Src-mediated tyrosine phosphorylation of dynamin is essential for its function in clathrin mediated G protein-coupled receptor endocytosis.  相似文献   

18.
Salt sensitivity is a heritable trait that is a hallmark of hypertension in black Americans. Genes encoding adrenergic receptors are candidate loci for the inheritance of this hypertension-related trait because of the role of these receptors in the regulation of renal sodium excretion and vascular tone. We performed this study to determine whether these loci are responsible for some of the phenotypic variation in salt sensitivity. Hypertensive black American probands were ascertained, followed by sequential ascertainment of adult sib pairs among the first-, second- and third-degree relatives of the proband. Both hypertensive and normotensive siblings were tested for salt sensitivity by an intravenous sodium-loading, lasix volume-depletion protocol. Genotyping was performed with restriction fragment length polymorphisms in genomic DNA probed with clones containing the beta 2- and alpha 2c10-adrenergic receptor genes. A total of 109 sib pairs was evaluated. Salt sensitivity was defined as the change in blood pressure in each individual, comparing the sodium-loaded with the volume-depleted state. Systolic pressure decreased by an average of 9.0 +/- 9%, diastolic pressure by 1.5 +/- 11%, and mean arterial pressure by 5.0 +/- 9%. Neither blood pressure nor salt sensitivity was linked at the alpha 2c10-adrenergic receptor locus. No evidence suggested that systolic salt sensitivity and baseline blood pressure were linked at the beta 2-adrenergic receptor locus. Model-independent sib pair linkage analysis suggested that diastolic blood pressure response to sodium loading/volume depletion is linked at the beta 2-adrenergic receptor locus (P < .006). Evidence for linkage was significant at the .05 level after adjustment for the number of phenotypic traits examined.  相似文献   

19.
At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes.  相似文献   

20.
Delayed cerebral arterial spasm was induced by subarachnoid hemorrhage in 11 rhesus monkeys. Ten monkeys (62%) developed spasm. Of seven monkeys treated with salbutamol (a beta2-adrenergic stimulating drug), five had relief of vasospasm. Four monkeys, one of which had failed to respond to salbutamol alone, were treated with salbutamol and aminophylline (a phosphodiesterase-inhibiting drug), and all four were relieved of their vasospasm. When considered as one group, the monkeys had an 81% response rate. The authors suggest that a combination of beta2-adrenergic stimulation and phosphodiesterase-inhibition might be of value in preventing or treating delayed cerebral arterial pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号