首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive experimental research has indicated that active/inactive nanocomposites are promising electrode materials for rechargeable Li-ion batteries. Nanocomposite anode materials allow for capacities between 900 and 4000 mAh g−1 whereas graphitic anodes, which are currently being used by industry, allow for a much lower capacity of 372 mAh g−1. By treating the active sites (which may be comprised of Si, Sn, Al, or Bi) as nanospheres embedded in an inert matrix, linear elastic fracture mechanics are employed in order to develop design criteria for these alternative battery systems, with respect to fracture that results from the large volume expansions that the active sites undergo upon Li-insertion. In particular, the present study: (i) predicts that smaller active site volume fractions are more stable; (ii) Griffith's criterion is used to estimate the crack radius at which cracking will stop; (iii) based on the ultimate tensile strength of the inactive matrix the critical crack length at which the electrode will fracture is calculated; (iv) a theoretical estimation is made for the size of the active sites that will not allow cracks to develop and hence fracture of the electrode will be prevented. Based on the above analysis, Si active sites allow for a greater anode lifetime and therefore are preferred over Sn, furthermore the formulation can be applied to determine the most appropriate matrix materials.  相似文献   

2.
Sputtering growth of a Sn/Li2O multilayer composite thin film is conducted to produce an anode thin film with less capacity fading than that of a pure SnO2 film for a thin-film battery. The structural properties of the Sn/Li2O multilayer are examined. In addition, the electrochemical characteristics of the Sn/Li2O and pure SnO2 thin films are compared. X-ray diffraction and transmission electron microscopy measurements reveal a Sn crystalline peak only and a Sn–Li2O multilayer structure, respectively, in the Sn/Li2O thin film. A SnO2 thin film with a polycrystalline phase shows an irreversible side-reaction at 0.8 V versus Li/Li+, an initial charge retention of about 29%, and poor cycleability in the cut-off voltage range from 1.2 to 0 V versus Li/Li+. By contrast, no irreversible side-reaction is found in the Sn/Li2O multilayer composite thin film while there is an initial charge retention of 49% and better cycleability (more than twice) than that of pure SnO2 film after about 150 cycles. These results indicate that the Sn/Li2O multilayer composite thin film can be used for tin-based, thin-film, microbatteries and provide motivation to pursue fabrication of Sn–Li2O anode powder for bulk type batteries.  相似文献   

3.
《Journal of power sources》2005,144(1):197-203
Anodes derived from oxides of tin have, of late, been of considerable interest because, in principle, they can store over twice as much lithium as graphite. A nanometric matrix of Li2O generated in situ by the electrochemical reduction of SnO2 can provide a facile environment for the reversible alloying of lithium with tin to a maximum stoichiometry of Li4.4Sn. However, the generation of the matrix leads to a high first-cycle irreversible capacity. With a view to increasing the reversible capacity as well as to reduce the irreversible capacity and capacity fade upon cycling, tin–tin oxide mixtures were investigated. SnO2, synthesized by a chemical precipitation method, was mixed with tin powder at two compositions, viz., 1:2 and 2:1, ball-milled and subjected to cycling studies. A mixture of composition Sn:SnO2 = 1:2 exhibited a specific capacity of 549 mAh g−1 (13% higher than that for SnO2) with an irreversible capacity, which was 7% lower than that for SnO2 and a capacity fade of 1.4 mAh g−1 cycle−1. Electrodes with this composition also exhibited a coulombic efficiency of 99% in the 40 cycles. It appears that a matrix in which tin can be distributed without aggregation is essential for realizing tin oxide anodes with high cyclability.  相似文献   

4.
Carbon-supported PdSn–SnO2 with high electrical catalytic activity for ethanol oxidation in alkaline solution was synthesized using an impregnation reduction method. XRD analysis of the as-prepared PdSn–SnO2/C revealed that the Pd diffraction peaks shifted to lower 2θ values with respect to the corresponding peaks of the Pd/C catalyst, indicating that Sn doping could shrink the Pd crystalline lattice. XPS measurements confirmed the existence of Sn and SnO2 in the PdSn–SnO2/C catalysts. The prepared PdSn–SnO2/C catalysts presented a remarkably higher electrocatalytic activity than that of the Pd–Sn/C and Pd/C catalysts. This was mainly because the easy adsorption-dissociation of OHads over the SnO2 surface changed the electronic effect and accelerated the adsorption of ethanol on the surface of Pd, thus enhancing the overall ethanol oxidation kinetics and contributing to a significant improvement in the catalytic activity.  相似文献   

5.
An empirical model is proposed to evaluate the contribution of alloyed and non-alloyed tin in Ptz-Sn/C catalysts to the performance of direct ethanol fuel cells (DEFCs). The model is based on the presence of SnO2 and a Pt(1−x)Sx solid solution in the bimetallic catalysts. The model predicts the dependence of the performance of a single DEFC on the total Sn content and the degree of alloying of Ptz-Sn/C catalysts used as the anode material.  相似文献   

6.
In this paper, a unique two-step method is developed to fabricate a nano-textured SnO2 coating. Nano-textured topography is successfully introduced at room temperature by evaporating Sn in a relatively high pressure. Nano-textured SnO2 coating is obtained by annealing in air, with lateral size of nearly 1 μm and root-mean-roughness of over 140 nm. Two structures: substrate and superstrate, are investigated to reveal the light-trapping efficiency. With only 300 nm thick Si absorber layer, the average reflectivity under AM 1.5 illumination spectrum can be limited at 14% and 7%, respectively. This technology is suitable for mass production.  相似文献   

7.
A novel synthesis method of thin-film composite Sn/C anodes for lithium batteries is reported. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one-step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 423 and 297 mAh g−1 at C/25 and 5C discharge rates, respectively. A long-term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.  相似文献   

8.
New semiconducting metal oxides of various compositions are of great interest for efficient solar water oxidation. In this report, Mo-doped SnO2 (Mo:SnO2) thin films deposited by reactive magnetron co-sputtering in the Ar and O2 gas environment are studied. The Sn to Mo ratio in the films can be controlled by changing the O2 partial pressure and the deposition power of the Sn and Mo targets. Increasing the Mo concentration in the film leads to the increase in the oxygen vacancy density, which limits the maximum achievable photocurrent density. The thin films exhibit a direct band gap of 2.7 eV, the maximum achievable photocurrent density of 0.6 mA cm−2 at 0 VRHE and the onset potential of 0.14 VRHE. The incident photon to current transfer (IPCE) efficiency of 22% is shown at a 450 nm wavelength. The initial performance of the Mo:SnO2 thin films is evaluated for solar water oxidation.  相似文献   

9.
《Journal of power sources》2006,157(1):522-527
Ultrafine powders of nanocrystalline CuFe2O4 and CuFe2O4/10 wt.% SnO2 nanocomposites are prepared by a urea–nitrate combustion method. Phase pure and highly crystalline CuFe2O4 (tetragonal structure) and CuFe2O4/SnO2 (cubic structure) are obtained after sintering at 1100 °C. The average particle size is 10–20 and 20–30 nm, respectively. Both the nanoferrite anodes have an excellent specific capacity of greater than 800 mAh g−1 versus Li metal. It is concluded that SnO2 doping improves the coulombic efficiency of copper ferrite anodes from 65 to 99.5% via an enhanced structural stability.  相似文献   

10.
In this study, a nitrogen-doped 3D porous starch-derived carbon/SnO2/carbon (PSC/SnO2/C) composite is synthesized with porous starch as a carbon source by biological enzymatic hydrolysis. Compared with the traditional complex acid-base reagent method, the biological enzymatic method is more environmentally friendly and economical, and it can also naturally introduce nitrogen sources and dope the carbon layer. Many mesoporous nanostructures provide enough buffer space and promote the ions' and electrons’ transmission rate. The formation of the Sn–O–C bond between SnO2 and carbon ensures the stability of the structure. As a result, the PSC/SnO2/C composite exhibits a high initial discharge capacity (1802 mAhg−1 at 0.2 A g−1 for LIBs and 549 mAh g−1 at 0.1 A g−1 for SIBs) and good cycle stability (701 mAh g−1 at 0.2 A g−1 after 100 cycles for LIBs and 271 mAh g−1 at 0.1 A g−1 after 100 cycles for SIBs). This synthesis method can prepare other energy storage systems such as fuel cells, supercapacitors, and metal ion batteries.  相似文献   

11.
Free standing SnO2/multiwalled carbon nanotube (MWCNT) nanocomposite anode materials were prepared for Li-ion batteries by sol–gel technique. Firstly, SnO2 precursor sols were synthesized after removing chloride ions. Then the sols coated on MWCNT buckypapers, which used as substrates to form nanocomposite electrodes by spin coating method. Sintered nanocomposite structures were then characterized by field emission gun-scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. Electrochemical tests were performed for the produced electrodes, assembled as CR2016 cells. The effect of spin rate on the anode capacity was investigated. Coating on the MWCNT buckypapers was thought to use as mechanical support to prevent electrode failure and prevented the formation of cracks of the sol–gel thin film on the MWCNT surfaces. The results showed beneficial effects to prevent mechanical disintegration and subsequent anode pulverization of SnO2 anodes because of huge volume increase during lithium intercalation. The results indicated that the nanocrystalline SnO2/MWCNT composites are suitable for applying as an anode electrode for Li-ion batteries to increase electrochemical energy storage performance.  相似文献   

12.
Sn-promoted Pt-based catalysts were prepared by the chemical vapor deposition (CVD) of Sn on commercial Pt/C and PtRu/C catalysts using Sn(CH3)4 as an Sn precursor. The prepared catalysts showed higher CO tolerance than those prepared by adding Sn using an impregnation (IMP) method. This result was obtained because Sn added by CVD was selectively deposited on the Pt and Ru surfaces, instead of on a carbon support, such that the interfacial contact between Pt and Sn was greater in the Sn-CVD catalyst than in the others, as confirmed by in-situ infrared and X-ray photoelectron spectroscopic observations of the catalysts.  相似文献   

13.
A macroporous SnO2/C composite anode material was synthesized using an organic template-assisted method. Polystyrene spheres were synthesized and used as template and lead to macroporous morphology with pores of 300-500 nm in diameter and a surface area of 54.7 m2 g−1. X-ray diffraction showed that the SnO2 nanoparticles are crystallized in a rutile P42/mnm lattice with the presence of Sn metal traces. The synthesized macroporous SnO2/C composite provided promising performance in lithium half cells showing a discharge capacity of 607 mAh g−1 after 55 cycles. It was found that the macroporous SnO2/C composite is stable and resistant to pulverization upon cycling.  相似文献   

14.
15.
Designing low cost, highly-active and stable oxygen evolution reaction (OER) catalysts for Proton Exchange Membrane Water Electrolysers (PEMWE) anodes is an important topic for industry and academia. A possible strategy to alleviate the cost of the anodic catalyst consists in synthesizing iridium oxide (IrOx) nanoparticles and dispersing them on an electron-conducting and highly-porous support such as SnO2 doped with hypervalent cations e.g. Sb(V) or Ta(V). Herein, we show the benefits of Sb- and Ta- doped SnO2 aerogels synthesized by a sol-gel route. The effect of the dopant nature on the aerogel's properties (as morphology, structure, conductivity, etc.) was investigated using a set of physical and chemical techniques. The electrocatalytic performance of the synthesized nanocatalysts towards the OER was also assessed in rotating disk electrode (RDE). Supported IrOx catalysts showed both higher specific and mass activity and stability than unsupported IrOx nanoparticles.  相似文献   

16.
In the development of emerging energy, proton exchange membrane fuel cells (PEMFCs) have been widely researched. Nevertheless, because of the high price and scarcity of Pt and its sluggish kinetics for oxygen reduction reaction (ORR), the preparation of highly effective cathode catalysts becomes one of the main challenges for PEMFCs in the practical application. In this study, carbon supported PtSn nanorods (NRs) with metal loading of 50 wt % and different Pt/Sn ratios of 80/20, 65/35 and 50/50 have been prepared by formic acid reduction method. The ORR performance of the catalysts can be promoted synergistically by one-dimensional (1-D) NRs and is varied with the Pt/Sn ratios. The experimental and computational efforts reveal that the Sn addition can lower the unoccupied d-band of neighboring Pt and the oxygen-containing species (OCS) on Sn can suppress their oxidation through the repulsion effect. Consequently, PtSn electrodes show the improved ORR activity; Pt50Sn50 with the highest Sn content results in the highest mass activity. On the other hand, the negatively charged OCS on Sn attracts the positively charged Pt and destructs the structures of PtSn NRs. Accordingly, Pt80Sn20 with the lowest Sn contain has the highest concentration of 1-D PtSn NRs and shows the best stability in the accelerated durability test (ADT). Our results clarify the mechanism of ORR on PtSn electrodes and suggest the importance of the precise control of atomic ratios on PtSn catalysts for the practical purpose. The findings open new perspectives about the origins of the activity and stability of the PtSn catalysts, especially for 1-D catalysts.  相似文献   

17.
A composite anode materials was prepared that contained tin compounds of Sn6O4(OH)4, SnO2 and Sn3PO4 on the surface of carbonaceous mixture mesophase graphite particles (MGP) and nature graphite (NG). The nanosize tin compounds were electrolessly plated from aqueous solutions onto the carbonaceous mixture. The morphology and structure of tin compounds were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the tin compounds particle size was a crucial factor to improve Sn compounds/Carbon composite anodes for cyclability and reversible capacity. The homogeneous dispersion and smaller particle size of tin compounds was attributed to the additive of NG. As the carbonaceous substrate was C-C mixture carbon, the particle size of Sn compounds was about 20-30 nm. However, the particle size was 100-200 nm, as the carbon substrate was singular MGP. Electrochemical performance test of the Sn compounds/C-C composite electrode shows the maximum specific charge capacity of 583 mAh g−1 at the 5th cycle. The charge capacity retention of Sn compounds/C-C electrode was 85% after 20 cycles. The reversible capacity of Sn compounds/C-C electrode increased 292 and 97 mAh g−1 more than pristine (NG + MGP) electrode and Sn compounds/C electrode at the 5th cycle, respectively.  相似文献   

18.
In this work, Pt–Sn/C electrocatalysts with nominal Pt:Sn ratio of 1:1 (at.%) were synthesized by a polyol/alcohol process. The effect of different ethylene glycol:ethanol:water (EG:EtOH:H2O) volume ratios on the physicochemical characteristics (i.e., Pt:Sn ratio and SnOx formation) of the Pt–Sn/C alloys was evaluated. In some cases, no water was used for the synthesis. Afterwards, the electrocatalytic activity of the alloys for the Ethanol and the Ethylene Glycol Oxidation Reaction (EOR and EGOR, respectively) was studied. XRD characterization showed that the degree of alloying calculated by using Vegard's law ranges from about 15% (synthesis in the presence of water) to roughly 49% (synthesis in the absence of water). The average particle size was calculated with the Scherrer equation to be within 1.8–4.7 nm, smaller sizes obtained in the absence of water. The chemical analysis by EDS indicated the formation of oxides regardless of the presence or not of water during the synthesis. The oxides were attributed to the presence of SnOx phases in the materials. The electrochemical characterization showed that the synthesis conditions have an important effect on the electrocatalytic activity of the Pt–Sn/C materials for the EOR and the EGOR. As a result, the alloys synthesized in the absence of H2O delivered a higher performance for both reactions.  相似文献   

19.
We produced hierarchically branched Fe2O3 nanorods on a Sb:SnO2 transparent conducting oxide (TCO) nanobelt structure as photoanodes for photoelectrochemical water splitting. Single-crystalline SnO2 nanobelts (NBs) surrounded by Fe2O3 nanorods (NRs) were synthesized by thermal evaporation, then underwent chemical bath deposition and annealing. When Fe2O3 was crystallized by annealing, Sn was diffused from SnO2 NBs and incorporated to Fe2O3 NRs, which was confirmed through Energy dispersive spectroscopy. Unlike previous high temperature sintering (∼800 °C), Sn doped hematite NRs were obtained at a low temperature (∼650 °C). This occurred since SnO2 NBs directly connected to Fe2O3 NRs are an abundant source of Sn dopant. The 3D hematite NRs on SnO2 NBs annealed at 650 °C produce a photocurrent density of 0.88 mA/cm2 at 1.23 V vs. RHE, which is 3 times higher than that of hematite NRs on a fluorine doped tin oxide (FTO) glass substrate annealed at the same temperature. The enhanced photocurrent is attributed to the improved electrical conductivity of Fe2O3 NRs by Sn doping, the efficient electron transport pathway by TCO nanowire and the increased surface area by hierarchically branched structure.  相似文献   

20.
Although palladium (Pd) based materials are considered the best catalyst for formic acid oxidation reaction (FAOR), they are still confronted with a lot of barriers, such as the growth/sintering of Pd nanoparticles (NPs) and the accumulation of adsorbed poisoning intermediates. Herein, tin dioxide (SnO2) decorated carbon black was utilized as the catalyst carrier to synthesize Pd/SnO2/C for FAOR. The introduction of SnO2 significantly reduced the particle size of Pd NPs and forming the Pd–O–Sn structure. Compared with Pd/C, Pd/SnO2/C owned higher concentration of Oads and less adsorption amount of poisoning intermediates. The oxygen atoms adsorbed on Pd surface were rapidly transferred to SnO2 due to the spillover effect. The FAOR reaction kinetic results showed that the introduction of SnO2 accelerated the diffusion rate of formic acid on the electrode surface. Pd/SnO2/C exhibited high specific activity (5.97 mA cm−2), excellent durability, and high anti-CO poisoning ability toward FAOR due to the introduction of SnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号