首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen vehicles are already a reality, However, consumers will be reluctant to purchase hydrogen vehicles (or any other alternative fuel vehicle) if they do not perceive the existence of adequate refueling infrastructure that reduces the risk of running out of fuel regularly while commuting to acceptable levels. This fact leads to the need to study the minimum requirements in terms of fuel availability required by drivers to achieve a demand for hydrogen vehicles beyond potential early-adopters.This paper studies consumer preferences in relation to the design of urban hydrogen refueling infrastructure. To this end, the paper analyzes the results of a survey carried out in Andalusia, a region in southern Spain, on drivers' current refueling tendencies, their willingness to use hydrogen vehicles and their minimum requirements (maximum distance to be traveled to refuel and number of stations in the city) when establishing a network of hydrogen refueling stations in a city. The results show that consumers consider the existence in cities of an infrastructure with a number of refueling stations ranging from approximately 10 to 20% of the total number of conventional service stations as a requisite to trigger the switch to the use of hydrogen vehicles. In addition, these stations should be distributed in response to the drivers’ preferences to refuel close to home.  相似文献   

2.
The fuel cell plug in hybrid electric vehicle (FCPHEV) is a near-term realizable concept to commercialize hydrogen fuel cell vehicles (FCV). Relative to conventional FCVs, FCPHEVs seek to achieve fuel economy benefits through the displacement of hydrogen energy with grid-sourced electrical energy, and they may have less dependence on a sparse hydrogen fueling infrastructure. Through the simulation of almost 690,000 FCPHEV trips using geographic information system (GIS) data surveyed from a fleet of private vehicles in the Puget Sound area of Washington State, USA, this study derives the electrical and hydrogen energy consumption of various design and control variants of FCPHEVs. Results demonstrate that FCPHEVs can realize hydrogen fuel consumption reductions relative to conventional FCV technologies, and that the fuel consumption reductions increase with increased charge depleting range. In addition, this study quantifies the degree to which FCPHEVs are less dependent on hydrogen fueling infrastructure, as FCPHEVs can refuel with hydrogen at a lower rate than FCVs. Reductions in hydrogen refueling infrastructure dependence vary with control strategies and vehicle charge depleting range, but reductions in fleet-level refueling events of 93% can be realized for FCPHEVs with 40 miles (60 km) of charge depleting range. These fueling events occur on or near the network of highways at approximately 4% of the rate (refuelings per year) of that for conventional FCVs. These results demonstrate that FCPHEVs are a type of FCV that can enable an effective and concentrated hydrogen refueling network.  相似文献   

3.
Fuel cell vehicles fueled with renewable hydrogen is recognized as a life-cycle carbon-free option for the transport sector, however, the profitability of the H2 pathway becomes a key issue for the FCV commercialization. By analyzing the actual data from the Zhangjiakou fuel cell transit bus project, this research reveals it is economically feasible to commercialize FCV in areas with abundant renewable resources. Low electricity for water electrolysis, localization of H2 supply, and curtailed end price of H2 refueling effectively reduce the hydrogen production, delivery and refueling cost, and render a chance for the profitability of refueling stations. After the fulfillment of the intense deployment of both vehicles and hydrogen stations for the 2022 Winter Olympics, the H2 pathway starts to make a profit thereafter. The practices in the Zhangjiakou FCB project offer a solution to the hydrogen economy, which helps to break the chicken-egg dilemma of vehicles and hydrogen infrastructure.  相似文献   

4.
We have examined the technical feasibility and economics of developing a hydrogen vehicle refueling infrastructure for a specific area where zero emission vehicles are being considered, Southern California. Potential hydrogen demands for zero emission vehicles are estimated. We then assess in detail several near term possibilities for producing and delivering gaseous hydrogen transportation fuel including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and truck delivered as a liquid to refueling stations; (2) hydrogen produced in a large, centralized steam reforming plant, and delivered via small scale hydrogen gas pipeline to refueling stations; (3) by-product hydrogen from chemical industry sources; (4) hydrogen produced at the refueling station via small scale steam reforming of natural gas; and (5) hydrogen produced via small scale electrolysis at the refueling station. The capital cost of infrastructure and the delivered cost of hydrogen are estimated for each hydrogen supply option. Hydrogen is compared to other fuels for fuel cell vehicles (methanol, gasoline) in terms of vehicle cost, infrastructure cost and lifecycle cost of transportation. Finally, we discuss possible scenarios for introducing hydrogen as a fuel for fuel cell vehicles.  相似文献   

5.
Hydrogen fuel cell vehicles are currently facing two difficulties in achieving their general use: the lack of hydrogen refueling stations and high hydrogen prices. Hydrogen refueling stations are the middle stage for delivering hydrogen from its sources to consumers, and their location could be affected by the distributed locations of hydrogen sources and consumers. The reasonable siting and sizing of hydrogen refueling stations could both improve the hydrogen infrastructure and reduce regional consumers' cost of using hydrogen. By considering the hydrogen life cycle cost and using a commercial volume forecasting model, this paper creates a relatively thorough and comprehensive model for hydrogen station siting and sizing with the objective of achieving the optimal costs for consumers using hydrogen. The cost‐based model includes the selection of the hydrogen sources, transportation methods, and storage methods, and thus, the hydrogen supply chain can also be optimized. A numerical example is established in Section 4 with the solution algorithm and results.  相似文献   

6.
Fuel cell electric vehicles (FCEVs) have now entered the market as zero-emission vehicles. Original equipment manufacturers such as Toyota, Honda, and Hyundai have released commercial cars in parallel with efforts focusing on the development of hydrogen refueling infrastructure to support new FCEV fleets. Persistent challenges for FCEVs include high initial vehicle cost and the availability of hydrogen stations to support FCEV fleets. This study sheds light on the factors that drive manufacturing competitiveness of the principal systems in hydrogen refueling stations, including compressors, storage tanks, precoolers, and dispensers. To explore major cost drivers and investigate possible cost reduction areas, bottom-up manufacturing cost models were developed for these systems. Results from these manufacturing cost models show there is substantial room for cost reductions through economies of scale, as fixed costs can be spread over more units. Results also show that purchasing larger quantities of commodity and purchased parts can drive significant cost reductions. Intuitively, these cost reductions will be reflected in lower hydrogen fuel prices. A simple cost analysis shows there is some room for cost reduction in the manufacturing cost of the hydrogen refueling station systems, which could reach 35% or more when achieving production rates of more than 100 units per year. We estimated the potential cost reduction in hydrogen compression, storage and dispensing as a result of capital cost reduction to reach 5% or more when hydrogen refueling station systems are produced at scale.  相似文献   

7.
This study examined driver acceptance and performance of hydrogen fuel cell electric vehicles as tested in real-world conditions over a two-year period. The study sample was a volunteer group of “n = 54” drivers who drove the vehicle for a month-long trial period. Each driver took ‘before’ and ‘after’ surveys regarding their driving experience. Drivers drove an average of 1400 miles per month, and either witnessed and/or performed vehicle refueling 3–10 times during their test period.Key findings from the study include that: 1) 80% of study participant drivers found that the fuel cell vehicle (FCV) performance “exceeded” or “greatly exceeded” their expectations; 2) 98% of study participant drivers view hydrogen as a fuel for vehicles as being “as safe” or “safer” than gasoline as a fuel for vehicles; and 3) 94% of participants view the process of fueling a vehicle with hydrogen to be “as safe” or “safer” than gasoline fueling. Other findings include that 85% of study participants who performed their own fueling described hydrogen fueling to be “somewhat” or “very” simple. Of the participants, 62% percent had to forgo at least one trip due to lack of hydrogen fuel, although vehicle range was rated by 75% of participants as entirely or mostly adequate. If fueling infrastructure availability was not an issue, and fuel cost per-mile was at parity with gasoline, 75% of participants would be willing to pay $40,000 or less for an FCV.  相似文献   

8.
The cost and logistics of building early hydrogen refueling infrastructure are key barriers to the commercialization of fuel cell vehicles. In this paper, we explore a “cluster strategy” for introducing hydrogen vehicles and refueling infrastructure in Southern California over the next decade, to satisfy California's Zero Emission Vehicle regulation. Clustering refers to coordinated introduction of hydrogen vehicles and refueling infrastructure in a few focused geographic areas such as smaller cities (e.g. Santa Monica, Irvine) within a larger region (e.g. Los Angeles Basin). We analyze several transition scenarios for introducing hundreds to tens of thousands of vehicles and 8–42 stations, considering:  相似文献   

9.
For optimizing locations of hydrogen refueling stations, two popular approaches represent fuel demands as either nodes or paths, which imply different refueling behavior and definitions of convenience. This paper compares path-based vs. node-based models from the perspective of minimizing total additional travel time and feasibly covering all demands with the same number of stations. For this comparison, two new station location models are introduced that extend the Flow Capturing Location Model (FCLM) and p-Median Problem (PMP) by consistently defining upper limits on vehicle driving range and maximum inconvenience on refueling trips. Results for an idealized metropolitan area and Orlando, Florida show that path-based refueling substantially reduces wasteful travel time for refueling and covers more demand feasibly and more equitably in most scenarios. Path-based models incorporate the fact that residents of a zone regularly interact with other zones; therefore, individual stations can cover flows originating both near and far from their locations. This study suggests that path-based approaches to planning hydrogen refueling infrastructure enable more people in more neighborhoods to refuel fuel-cell vehicles without wasting excessive time or running out of fuel.  相似文献   

10.
All new technologies, including automotive technologies, are first purchased by early adopters. These consumers are currently posed with the choice of purchasing a fuel cell vehicle (FCV) or a variety of other alternatively fueled vehicles, including battery electric vehicles (BEVs). For FCVs to be commercially successful they need to carve out their own niche in the automotive market, something which may prove challenging in the face of strong BEV market growth. The results in this paper come from a questionnaire survey of 470 FCV owners and 1550 BEV owners. The paper explores the socio-economic profile, travel patterns, and attitudes of FCV buyers and compares them to the buyers of BEVs. The result suggests that the adopters of BEVs and FCV are similar in gender, level of education, household income, and have similar travel patterns. They have differences in age, ownership of previous alternative fuel vehicles, attitudes towards sustainability, and more FCV owners live in rented homes and apartment buildings. The results of the study suggest that FCVs may appeal to consumers who live in homes where they cannot recharge a BEV or install their own charger. FCVs still have several challenges to overcome, including the lack of hydrogen refueling stations and a lack of FCV models to choose from.  相似文献   

11.
Fuel cells generate electricity and heat during electrochemical reaction which happens between the oxygen and hydrogen to form the water. Fuel cell technology is a promising way to provide energy for rural areas where there is no access to the public grid or where there is a huge cost of wiring and transferring electricity. In addition, applications with essential secure electrical energy requirement such as uninterruptible power supplies (UPS), power generation stations and distributed systems can employ fuel cells as their source of energy.The current paper includes a comparative study of basic design, working principle, applications, advantages and disadvantages of various technologies available for fuel cells. In addition, techno-economic features of hydrogen fuel cell vehicles (FCV) and internal combustion engine vehicles (ICEV) are compared. The results indicate that fuel cell systems have simple design, high reliability, noiseless operation, high efficiency and less environmental impact. The aim of this paper is to serve as a convenient reference for fuel cell power generation reviews.  相似文献   

12.
This article explores the possibilities of substituting internal combustion vehicles (ICV) by fuel cell vehicles (FCV) refueled with hydrogen generated by electrolysis during the hours of low demand in the electrical grid, having been estimated that this substitution ratio would be below 25% of the total number of vehicles existing today, against the 100% in the case of using electric vehicles. Furthermore, a network of 322 hydrogen stations would be necessary for refueling the maximum number of fuel cell vehicles, given the actual limitations of the electrical grid for hydrogen generation. Thus, considering that hydrogen used for refueling would be generated by electrolysis using the electrical grid, fuel cell vehicles would only be a 4% less polluting than an internal combustion vehicle. However, if we could achieve a substitution ratio of 25% of the total ICV by FCV, the Autonomous Region of Murcia could avoid the emission of up to 24,500 metric Tons of CO2 to the atmosphere every year. This value contrasts with the 2.2 millions of metric tons of CO2 that could be avoided using electric vehicles.  相似文献   

13.
The construction of hydrogenation infrastructure is important to promote the large-scale development of hydrogen energy industry. The technical performance of hydrogen refueling station (HRS) largely determines the refueling efficiency and cost of hydrogen fuel cell vehicles. This paper systematically lists the hydrogen refueling process and the key equipment applicable in the HRS. It comprehensively reviews the key equipment configuration from the hydrogen supply, compression, storage and refueling of the HRS. On the basis of the parameter selection and quantity configuration method, the process optimization technology related to the equipment utilization efficiency and construction cost was quantitatively evaluated. Besides, the existing problems and prospects are put forward, which lays the foundation for further research on the technical economy of HRSs.  相似文献   

14.
目的  加氢站是氢燃料电池车推广应用的关键基础设施。70 MPa加氢可以显著提升氢燃料电池车的续航能力和经济性。为准确分析70 MPa加氢站的能耗,降低运营成本。 方法  建立了70 MPa加氢站加氢过程动态热力学模型,基于SAE J2601加注协议研究了单次加氢过程中压力和温度的动态变化规律,分析了单次加氢的能耗组成和多次加氢的能耗变化。 结果  结果表明:单次加氢过程中165 s加满车载储氢瓶,295 s完成高压储氢瓶补氢,5 min内完成一次加氢循环。加氢能耗由压缩机、冷水机组和冷冻机组能耗组成,其中压缩机能耗超过64%,冷水机组能耗约为压缩机能耗三分之一。随着加氢次数增多,单次加氢能耗升高,第一次和第二十次加氢的比能耗分别为0.98 kWh/kg和1.24 kWh/kg。 结论  缩短单次加氢时间可以从提升压缩机流量入手。降低压缩机能耗是加氢过程节能的关键环节。三级高压储氢瓶的压力配置影响加氢能耗中的多个环节,如何对三级压力进行合理配置,值得进一步研究。  相似文献   

15.
《Journal of power sources》2006,155(2):297-310
The transportation sector is responsible for a great percentage of the greenhouse gas emissions as well as the energy consumption in the world. Canada is the second major emitter of carbon dioxide in the world. The need for alternative fuels, other than petroleum, and the need to reduce energy consumption and greenhouse gases emissions are the main reasons behind this study. In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. The data collected from the literature shows that the energy consumption for the production of 1 kg of aluminum is five times higher than that of 1 kg of steel, although higher aluminum content makes vehicles lightweight and more energy efficient during the vehicle use stage. Greenhouse gas regulated emissions and energy use in transportation (GREET) software has been used to analyze the fuel life cycle. The life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting, and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that the use of coal to obtain hydrogen generates the highest emissions and consumes the highest energy. Comparing the overall life cycle of an ICEV and a FCV, the total emissions of an FCV are 49% lower than an ICEV and the energy consumption of FCV is 87% lower than that of ICEV. Further, CO2 emissions during the hydrogen fuel production in a central plant can be easily captured and sequestrated. The comparison carried out in this study between FCV and ICEV is extended to the use of recycled material. It is found that using 100% recycled material can reduce energy consumption by 45% and carbon dioxide emissions by 42%, mainly due to the reduced use of electricity during the manufacturing of the material.  相似文献   

16.
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises, both refueling infrastructure and vehicles should be deployed together with improved refueling protocols. Several studies focus on refueling the light-duty vehicles with 10 kgH2 up to 700 bar, however less known effort is reported for refueling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustrates the application of a lumped model to a fuel cell bus tank-to-tank refueling event, tailored upon the real data acquired in the 3Emotion Project. The evolution of the main refueling quantities, such as pressure, temperature, and mass flow, are predicted dynamically throughout the refueling process, as a function of the operating parameters, within the safety limits imposed by SAE J2601/2 technical standard. The results show to refuel the vehicle tank from half to full capacity with an Average Pressure Ramp Rate (APRR) equal to 0.03 MPa/s are needed about 10 min. Furthermore, it is found that the effect of varying the initial vehicle tank pressure is more significant than changing the ambient temperature on the refueling performances. In conclusion, the analysis of the effect of different APRR, from 0.03 to 0.1 MPa/s, indicate that is possible to safely reduce the duration of half-to-full refueling by 62% increasing the APRR value from 0.03 to 0.08 MPa/s.  相似文献   

17.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

18.
The objective of the present work is to validate the hydrogen energy roadmap of Japan by analyzing the market penetration of fuel cell vehicles (FCVs) and the effects of a carbon tax using an energy system model of Japan based on MARKAL. The results of the analysis show that a hydrogen FCV would not be cost competitive until 2050 without a more severe carbon tax than the government's planned 2400 JPY/t-C carbon tax. However, as the carbon tax rate increases, instead of conventional vehicles including the gasoline hybrid electric vehicle, hydrogen FCVs gain market penetration earlier and more. By assuming a more severe carbon tax rate, such as 10 000 JPY/t-C, the market share of hydrogen FCVs approaches the governmental goal. This suggests that cheaper vehicle cost and hydrogen cost than those targeted in the roadmap should be attained or subsidies to hydrogen FCV and hydrogen refueling station will be necessary for achieving the goal of earlier market penetration.  相似文献   

19.
This paper has performed an assessment of lifecycle (as known as well-to-wheels, WTW) greenhouse gas (GHG) emissions and energy consumption of a fuel cell vehicle (FCV). The simulation tool MATLAB/Simulink is employed to examine the real-time behaviors of an FCV, which are used to determine the energy efficiency and the fuel economy of the FCV. Then, the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model is used to analyze the fuel-cycle energy consumption and GHG emissions for hydrogen fuels. Three potential pathways of hydrogen production for FCV application are examined, namely, steam reforming of natural gas, water electrolysis using grid electricity, and water electrolysis using photovoltaic (PV) electricity, respectively. Results show that the FCV has the maximum system efficiency of 60%, which occurs at about 25% of the maximum net system power. In addition, the FCVs fueled with PV electrolysis hydrogen could reduce about 99.2% energy consumption and 46.6% GHG emissions as compared to the conventional gasoline vehicles (GVs). However, the lifecycle energy consumption and GHG emissions of the FCVs fueled with grid-electrolysis hydrogen are 35% and 52.8% respectively higher than those of the conventional GVs. As compared to the grid-based battery electric vehicles (BEVs), the FCVs fueled with reforming hydrogen from natural gas are about 79.0% and 66.4% in the lifecycle energy consumption and GHG emissions, respectively.  相似文献   

20.
Popularity of fuel cell electric vehicles (FCVs) is an important criterion for solving the global problem of reducing CO2 emissions. However, the overall cost of FCVs and hydrogen fuel production is relatively high, so FCV promotion is slow. Considering that FCVs have near-zero CO2 emissions and high endurance, which is suitable for vehicle-to-grid (V2G) systems, this study aims to analyze the economic potential of the fuel cell vehicle-to-grid (FCV2G) systems to promote FCVs to the highest level. For this purpose, a large-scale green building was first selected as the research target and an agent to provide V2G services for the power grid. Then, Monte Carlo method was used to simulate the vehicle visiting time. A discharge model was also developed. Considering CO2 emission price and self-elasticity coefficient of discharge price, an overall economic optimization model was presented. Then, the hybrid algorithm of competitive swarm optimization (CSO) and imperialist competitive algorithm (ICA) was applied to optimize the model, which not only led to definite results and reduced standard deviation, but also eliminated the weakness of the CSO, i.e., convergence speed and poor performance in some benchmark functions. The simulation results indicated the proposed algorithm had faster convergence and more accuracy in finding the optimal solution than other optimization algorithms. Moreover, the overall economic profit improved in the presence of FCVs. Finally, sensitivity analysis was performed on six parameters, including daily electricity price, battery cost, fuel cell cost, CO2 emission price, power grid carbon emission, and hydrogen cost. The results showed FCV2G system had high development potential as well as great economic profit increasing over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号