共查询到20条相似文献,搜索用时 15 毫秒
1.
Francisco Fabregat-Santiago Juan Bisquert Germ Garcia-Belmonte Gerrit Boschloo Anders Hagfeldt 《Solar Energy Materials & Solar Cells》2005,87(1-4):117
The main features of the characteristic impedance spectra of dye-sensitized solar cells are described in a wide range of potential conditions: from open to short circuit. An equivalent circuit model has been proposed to describe the parameters of electron transport, recombination, accumulation and other interfacial effects separately. These parameters were determined in the presence of three different electrolytes, both in the dark and under illumination. Shift in the conduction band edge due to the electrolyte composition was monitored in terms of the changes in transport resistance and charge accumulation in TiO2. The interpretation of the current–potential curve characteristics, fill factor, open-circuit photopotential and efficiency in the different conditions, was correlated with this shift and the features of the recombination resistance. 相似文献
2.
Carbon-nanofibers (CNFs) with antler and herringbone structures are studied as a tri-iodide (I3−) reduction electrocatalyst in combination with the liquid electrolyte or an alternative stable quasi-solid state electrolyte. The catalytic properties of the counter electrode (CE) are characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The doctor bladed low temperature CNFs-CE has faster I3− reduction rate and low charge transfer resistance (RCT) of ∼0.5 Ω cm2 than platinum (Pt) (∼2.3 Ω cm2) due to the nanofiber stacking morphology. Its herringbone and antler structures with graphitic layers lead to defect rich edge planes and larger diameter of CNFs facilitate the electron transfer kinetics. The cells with CNF counter electrodes are showing promising energy conversion efficiency greater than 7.0% for the glass based devices and 5.0% for the flexible cells filled with the quasi-solid state electrolyte, which is similar to Pt performance. Application of CNFs-CE in flexible and quasi-solid state electrolyte increases the possibility of roll to roll process, low cost and stable dye-sensitized solar cells (DSCs). 相似文献
3.
《Journal of power sources》2007,165(2):911-915
A novel alkyloxy-imidazole polymer was prepared by in situ co-polymerization of alkyloxy-imidazole and diiodide to develop an ionic polymer gel electrolyte for quasi-solid dye-sensitized solar cells (DSCs). The DSCs with the polymer gel electrolyte of 1-methyl-3-propylimidazolium iodide (MPII) showed good photovoltaic performance including the short-circuit photocurrent density (Jsc) of 3.6 mA cm−2, the open-circuit voltage (Voc) of 714.8 mV, the fill factor (FF) of 0.60 and the light-to-electricity conversion efficiency (η) of 1.56% under AM 1.5 (100 mW cm−2). As a comparison, the DSCs with the polymer gel electrolyte of 1,2-dimethyl-3-propylimidazolium iodide (DMPII) yielded a light-to-electricity conversion efficiency of 1.33%. The results indicated that the as-prepared polymers were suitable for the solidification of liquid electrolytes in DSCs. 相似文献
4.
Masayuki Itagaki Kazuya Hoshino Yuya Nakano Isao Shitanda Kunihiro Watanabe 《Journal of power sources》2010,195(19):6905-7983
Theoretical equations of the Faradaic impedance of the photoelectrode and the counter electrode of dye-sensitized solar cell (DSC) were derived. The Faradaic impedance is the frequency dependent resistance related to the time constants of elementary electrode processes like photoexcitation, electron transfer, charge transfer reaction and diffusion. The typical cell impedance spectrum describes the locus of three semicircles on the Nyquist plane. The locus of three semicircles is generally analyzed by using the equivalent circuit composed of charge transfer resistance (Rct,1) and capacitance (Cdl,1) of counter electrode, charge transfer resistance (Rct,2) and capacitance (Cdl,2) of photoelectrode, the finite diffusion impedance due to the diffusion of I3− on the counter electrode (Zw), and total resistance of the substrate and solution (Rs). The physical meanings of Rct,1 and Rct,2 can be elucidated by the interpretations of Faradaic impedance derived in the present paper. The Rct,1 is represented as the function of the potential-dependent rate constants of I3− reduction and I− oxidation. On the other hand, the Rct,2 is the function of the photoelectrode potential, the surface concentration of I3− and the potential-independent rate constant of the back electron transfer reaction. The theoretical expressions of the current-voltage (I-V) curve of the DSC can be also derived. In the present paper, the relations between the impedance and I-V curve of the DSC are discussed. 相似文献
5.
A new solvent-free composite polymer electrolyte consisting of poly(ethylene oxide) (PEO) incorporated into diphenyl amine (DPA) along with KI and I2 has been developed. The current-voltage characteristics of this nanocrystalline dye-sensitized solar cell measured under simulated sunlight with 1.5 AM at 60 mW/cm2 have indicated that this cell generates a photocurrent of 10.2 mA/cm2, together with a photovoltage of 810 mV and fill factor of 0.47 yielding an overall energy conversion efficiency of 6.5%. This result suggests that the electron donicity of DPA influences the interaction of nanocrystalline TiO2 electrode and I−/I3− electrolyte, leading to a high performance of the fabricated solar cell. 相似文献
6.
An inexpensive and efficient pyridine-based additive for the electrolyte of dye-sensitized solar cells 总被引:1,自引:0,他引:1
Jifu Shi 《Journal of power sources》2009,193(2):878-884
We report on the synthesis and application of an inexpensive pyridine-based additive allyl isonicotinate (AIN) for the efficient dye-sensitized solar cells (DSCs). AIN can be quickly synthesized at room temperature without any solvent. The presence of AIN in the electrolyte enhances the open-circuit voltage (Voc), fill factor (FF) and short-circuit photocurrent (Jsc), consequently improving the energy conversion efficiency (η) from 6.5% to 8.2%. The impedance experiments show that the adsorption of AIN leads to the negative shift of the conduction band edge of the dye-sensitized TiO2 around 55 mV. The presence of AIN in the electrolyte can obviously suppress the recombination of the injected electrons, increasing the lifetime of electrons in the TiO2. The negative shift of the conduction band edge and the suppression of the recombination of the injected electrons contribute to the higher power conversion efficiency. 相似文献
7.
Naohiko Kato Kazuo HiguchiHiromitsu Tanaka Junji NakajimaToshiyuki Sano Tatsuo Toyoda 《Solar Energy Materials & Solar Cells》2011,95(1):301-305
To improve the intrinsic stability of the component of dye-sensitized solar cells (DSCs), we have fabricated the unit cell using solvent-free ionic liquid electrolyte. The degradation in the continuous 1 sun light soaking test at 60 °C over 15,000 h was effectively suppressed, compared with the cell using γ-butyrolactone electrolyte. The lifetime for outdoor use was estimated over 15 years from acceleration factor based on the outdoor exposure test. To confirm the stability of the DSC under practical outdoor use, we fabricated the solar light using the DSC modules, rechargeable batteries and bright light emitting diode (LED). The solar lights have been emitting a bright white light at night using the electricity from batteries charged by the DSC modules during the daytime in any weather condition for a half year. 相似文献
8.
Heteropolyacid-impregnated PVDF as a solid polymer electrolyte for dye-sensitized solar cells 总被引:1,自引:0,他引:1
S. Anandan S. Pitchumani B. Muthuraaman P. Maruthamuthu 《Solar Energy Materials & Solar Cells》2006,90(12):1715-1720
Heteropolyacid (HPA)-impregnated polyvinylidene fluoride (PVDF) with iodine/iodide was prepared as a new polymer electrolyte for bio-mimicking natural photosynthesis. With this new polymer electrolyte, dye-sensitized solar cell was fabricated using N3 dye-adsorbed over TiO2 nanoparticles (photoanode) and conducting carbon cement coated on conducting glass (photocathode). The fabricated cell generates high open circuit voltage (VOC 426 mV) and short circuit current (ISC 3.90 mA) upon illumination with visible light. It is also demonstrated that the polymer electrolytes prevent the back-electron transfer reactions taking place in dye-sensitized hetero-junctions and are highly promising for solar energy conversion to electricity. 相似文献
9.
Federico Bella Elena Daniela Ozzello Adriano Sacco Stefano Bianco Roberta Bongiovanni 《International Journal of Hydrogen Energy》2014
We report on the preparation and characterization of novel polymer electrolyte membranes for quasi-solid dye-sensitized solar cells. New methacrylic–acrylic gel-polymer electrolytes were prepared by photo-polymerization of mono/di-functional monomers. The crosslinked films were self standing, transparent and flexible. They were swelled by an iodine–iodide solution, obtaining a stable gel, where the polymeric network acts as a cage to retain the liquid, preventing its evaporation. Such a system combines the cohesive property of a solid with the high ionic conductivity of a liquid. The evaluation of the structural and physical-chemical characteristics of the polymer, combined with the electrical characterization of the membranes by means of the electrochemical impedance spectroscopy, allowed us to investigate the structure/property relationship of the material. The electric characterizations of the solar harvester based on the gel-polymer electrolyte showed a maximum photovoltaic conversion efficiency of 4.41%. Moreover, a significant improvement in the durability of the device was demonstrated with respect to the liquid electrolyte-based counterpart. 相似文献
10.
Jilian Nei de Freitas Claudia Longo Ana Flvia Nogueira Marco-Aurelio De Paoli 《Solar Energy Materials & Solar Cells》2008,92(9):1110-1114
Dye-sensitized TiO2 solar cells assembled with a polymer electrolyte were investigated, aiming at the construction of an 8 V solar module. The individual solar cells were assembled with 4.5 cm2 active area and were characterized under outdoor conditions, exhibiting an average efficiency of 0.9% per cell (at 12:00 noon). The solar module was built by connecting 13 cells in series. The integrated average daily power was estimated to be 183 mW. The present paper discusses the performance of the individual cells and the module. 相似文献
11.
A simplified electric model of the dye-sensitized electrochemical solar cell (DSC) is presented. It permits the calculation of internal steady-state cell characteristics like particle density distributions or the electric field as a function of the (measured) external current Iext. The cell is modeled as an one-dimensional pseudo-homogeneous medium of thickness L, where all the electroactive particles involved in the current supporting process move according to different effective transport coefficients (i.e. effective diffusivities D and effective mobilities μ). The electroactive particles are the electrons e− injected into the nanoporous TiO2 layer after light absorption by the dye, the reduced and the oxidized counterpart of the redox electrolyte ElRed and ElOx, and the positively charged cation Kat+ being brought into the cell together with the electrolyte. By applying the continuity equation, the transport-equation and Poisson's equation to all the electroactive species involved (e−, ElRed, ElOx and Kat+) and by assuming a linear Boltzmann relaxation approximation for the back reaction, a system of differential equations is derived, describing particle densities, particle currents and the electric field within the cell. The underlying simplifying assumptions as well as the resulting limits of the model are stated, and some possible extensions are given. This paper aims to outline the general ideas and limitations of the proposed electric modeling, numerical calculations have been successfully implemented, but will be presented in a future paper. 相似文献
12.
T. Suresh James Joseph Kyung Mo Son R. Vittal Jiwon Lee Kang-Jin Kim 《Solar Energy Materials & Solar Cells》2007,91(14):1313-1318
Network hybrid gel prepared with tetraethyl orthosilicate, 3-aminopropyltrimethoxysilane (APS) and poly(ethylene glycol) was used as an electrolyte matrix in a quasi-solid state dye-sensitized solar cell (DSSC). Change in pH of this hybrid gel by varying the composition of APS was found to have remarkable effects on the photoelectrochemical performance of the cell. The hybrid gel matrix, having silane polymer backbones with free amine functionality, was characterized by FT-IR spectra and FE-SEM images, and the assembled DSSC by photocurrent-voltage and incident photon to current conversion efficiency curves. The unsealed, quasi-solid state DSSC with the hybrid gel has shown an increase in the open-circuit voltage (Voc) and a steady decrease in the short-circuit photocurrent (Jsc), with increase in the content of APS. A maximum conversion efficiency of 4.5% was obtained for a DSSC by using 20% of APS in its hybrid gel at a light intensity of 100 mW cm−2. Upon replacing the amino group of APS by bulkier aniline and benzophenoaniline groups, conversion efficiencies of the corresponding DSSCs were reduced. Variations in the Voc and Jsc are explained in terms of shift of the flat band potential of TiO2 and a complex formation between I3− and −NH2 of APS of the electrolyte. 相似文献
13.
Xiao Zhang Hong Yang Huan-Ming Xiong Fu-You Li Yong-Yao Xia 《Journal of power sources》2006,160(2):1451-1455
A novel gel electrolyte was prepared by dispersing the polymer-grafted ZnO nanoparticle into liquid electrolyte. This gel electrolyte behaves long-term stability as the poly(ethylene glycol methyl ether) molecules are strongly connected to ZnO nanoparticles with covalent bond in polymer-grafted ZnO nanoparticle. A quasi-solid-state dye-sensitized solar cell (DSC) based on this gel electrolyte yields the energy transfer efficiency of 3.1% at AM 1.5 direct irradiation of 75 mW cm−2 light intensity. Addition of 4-tert-butylpyridine into the electrolyte results in dramatically improved short circuit current density Isc, and the overall efficiency is also improved to 5.0%, while the open circuit voltage (Voc) and fill factor (ff) are insensitive to the presence of 4-tert-butylpyridine. DSC fabricated with this novel gel electrolyte displays better thermal stability than those solidified with the conventional nanoparticle ZnO(Ac). 相似文献
14.
Hitoshi Kusama Yoshinari Konishi Hideki Sugihara Hironori Arakawa 《Solar Energy Materials & Solar Cells》2003,80(2):2533
The influence of alkylpyridines additive to an I−/I3− redox electrolyte in acetonitrile on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell was studied. I–V measurements were performed using more than 30 different alkylpyridines. The alkylpyridine additives showed a significant influence on the performance of the cell. All the additives decreased the short-circuit photocurrent (Jsc), but most of the alkylpyridines increased the open-circuit photovoltage (Voc) and fill factor (ff) of the solar cell. The results of the molecular orbital calculations suggest that the dipole moment of the alkylpyridine molecules correlate with the Jsc of the cell. These results also suggest that both the size and ionization energy of pyridines correlate with the Voc of the cell. Under AM 1.5 (100 mW/cm2), the highest solar energy conversion efficiency (η) of 7.6% was achieved by using 2-propylpyridine as an additive, which was more effective than the previously reported additive, 4-t-butylpyridine. 相似文献
15.
Lei Guo 《Solar Energy》2011,85(1):7-2062
A novel series of hydrophobic room temperature ionic liquids based on six cyclic sulfonium cations were first time synthesized and applied in dye-sensitized solar cells as pure solvents for electrolyte system. The chronoamperograms result showed that the length of substituent on sulfonium cations could inhibit the diffusion and the five-ring structure of sulfonium was benefit for fast triiodide ion diffusion. The electrochemical impendence spectra measurement of dye-sensitized solar cells with these ionic liquid electrolytes was carried out and the result indicated that the cations’ structure had indeed influence on the cells’ performance especially for the fill factor, which was further proved by the measurement result of I-V curves of these dye-sensitized solar cells. The conclusion was obtained that the electron exchange reaction on Pt counter electrode/electrolyte interface dominated the cells’ performance for these ionic liquid electrolyte-based DSCs. 相似文献
16.
Minna Toivola Fredrik Ahlskog Peter Lund 《Solar Energy Materials & Solar Cells》2006,90(17):2881-2893
Direct integration of dye-sensitized solar cells (DSSC) onto industrial sheet metals has been studied. The stability of the metals, including zinc-coated and plain carbon steel, stainless steel and copper in a standard iodine electrolyte was investigated with soaking and encapsulation tests. Stainless and carbon steel showed sufficient stability and were used as the cell counter-electrodes, yielding cells with energy conversion efficiencies of 3.6% and 3.1%, respectively. A DSSC built on flexible steel substrates is a promising approach especially from the viewpoint of large-scale, cost-effective industrial manufacturing of the cells. 相似文献
17.
Novel iminocoumarin dyes (2a-c and 3a-c) having carboxyl and hydroxyl anchoring groups onto the dyes skeletons have been designed and synthesized for the application of dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). The photophysical and electrochemical studies showed that these iminocoumarin dyes are suitable as light harvesting sensitizers in DSSC application. The dyes having carboxyl and hydroxyl anchoring groups (2a-c) showed better efficiency when compared to the dyes having carboxyl group (3a-c) alone. The cell consisted of dye 2a generated the highest solar-to-electricity conversion efficiency (η) of 0.767% (open circuit voltage (Voc) = 0.491 V, short circuit photocurrent density (Jsc) = 2.461 mA cm−2, fill factor (ff) = 0.635) under simulated AM 1.5 irradiation (1000 W m−2) with a total semiconductor area of 0.25 cm2. The corresponding incident photon-to-current conversion efficiency (IPCE) of the above cell was 21.38%. The overall low efficiency of the dyes is ascribed to the lack of light harvesting ability at longer wavelength region. 相似文献
18.
Luísa Andrade Rui CruzHelena Aguilar Ribeiro Adélio Mendes 《International Journal of Hydrogen Energy》2010
The present work reports the photoelectrochemical characterization of a dye-sensitized solar cell (DSC) to assist water split in a photoelectrochemical (PEC) cell. Performance parameters were extracted from standard current–voltage characteristic (I–V) and the charge transfer phenomena occurring at different interfaces of the DSC were evaluated by electrochemical impedance spectroscopy (EIS). The DSC comprised the N719 dye and a robust electrolyte (1-propyl-3-methylimidazolium iodide in guanidinium thiocyanate additive). At 1 sun illumination the DSC yielded a short-circuit photocurrent density of 14.9 mA cm−2, an open-circuit voltage of 0.797 V, a fill factor of 0.712 and an overall efficiency of 8.5%. Different PEC systems based on silicon-doped and undoped hematite photoelectrodes were considered. The required additional anodic bias necessary for actual water cleavage was supplied by two DSCs in series operating just under open-circuit voltage (1.56 V), allowing a conversion efficiency of about 1.12% for the silicon-doped hematite deposited by APCVD, 0.51% for the silicon-doped prepared by USP and 0.12% for the undoped hematite sample. 相似文献
19.
Data mining assisted by theoretical calculations for improving dye-sensitized solar cell performance
Hitoshi Kusama Yoshinari Konishi Hideki Sugihara 《Solar Energy Materials & Solar Cells》2007,91(1):76-78
Data mining using experimental data and information generated from theoretical calculations is proposed to study dye-sensitized solar cells, which are complex systems. This method led to new knowledge about the influence of imidazole derivatives as additives in an electrolytic solution on the cell performance. It was found that the solar energy conversion efficiency is strongly correlated to the Mulliken charge of the carbon atom at position 4 in the imidazole group. This result indicates that data mining assisted by theoretical calculations should facilitate the rate that cell performance is improved. 相似文献
20.
Yi-Duo ZhangXiao-Ming Huang Kui-Yi GaoYue-Yong Yang Yan-Hong LuoDong-Mei Li Qing-Bo Meng 《Solar Energy Materials & Solar Cells》2011,95(9):2564-2569
A precise numerical model based on Kirchhoff's laws is used in investigating dye-sensitized solar cell (DSC) modules. As the I-V curve of a small DSC is obtained, the performances of DSC modules with any geometrical character can be exactly simulated by this model. By simulation, we find that the poor synchronization of work status in each cell is the main cause of low efficiency of large area module besides the Joule losses in the resistances. The optimized geometry parameters of the DSC module are mainly influenced by the manufacturing technique rather than the performance of the small cell. Simulation shows that the large area DSC module with aperture area efficiency of 10.57% can be produced based on the small cell with efficiency of 11.1%. 相似文献