首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium cobalt nitrides Li3−2xCoxN (0.1 ≤ x ≤ 0.44) have been prepared and investigated as negative electrode in the 1/0.02 V potential window. The evolution of the unit cell parameters and unit cell volume with the Co content show a solid solution behaviour. Whatever the Co content, all these nitrides are electroactive with a single step around 0.6 V/0.7 V for the discharge and charge processes, respectively. The electrochemical behaviour observed is typical of a Li intercalation compound and involves the Co2+/Co+ redox couple in the interlayer plane combined with the reversible accommodation of Li+ ions in the cation vacancies located in Li2N layers. XRD experiments performed after discharge, charge and cycling tests clearly indicate the hexagonal layered structure of the host lattice is maintained. This intercalation process explains the excellent capacity retention found after 50 cycles. A specific capacity of 180 mAh g−1 at C/20 and 130 mAh g−1 at C/5 rate (100 mA cm−2) is achieved for Li2.23Co0.39N. ac impedance measurements have allowed to characterize the kinetics of the reaction.  相似文献   

2.
A series of carbon-coated layered structured Li[CrxLi(1/3−x/3)Ti(2/3−2x/3)]O2 samples (0.3 ≤ x ≤ 0.45) were prepared. Among them, the sample of x = 0.4 shows the highest initial reversible capacity of 207 mAh g−1 at 30 mA g−1 in 2.5–4.4 V. The reversible Li-storage capacities for the samples with high x values (x = 0.4, 0.45) faded slightly while the samples with low Cr content (x = 0.3 and 0.35) showed a capacity increase upon cycling. It was found that the relative intensity ratio of (0 0 3) peak to (1 0 4) peak (R(0 0 3) = I(0 0 3)/I(1 0 4)) is influenced strongly by x value in as-prepared samples. The samples of x = 0.35 and 0.4 turn to a similar structure with low R(0 0 3) value during cycling. These phenomena indicate that the cation mixing of Cr3+ in the lithium layer occurs in as-prepared samples and became more significant upon delithiation and lithiation. This is supposed being a necessary process for Cr-based layered structure materials possessing electrochemical reactivates. The occurrence of the cation mixing is beneficial from the local lattice distortion caused by the short-range ordering between Ti and Li. This is supposed to be helpful for the migration of Cr6+ and Cr3+ at tetrahedral and octahedral sites. Different from the case of LiNiO2, the cation mixing is essential for the transport and storage of lithium in the carbon-coated Li–Cr–Ti–O layered compounds.  相似文献   

3.
Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 layered materials were synthesized by the co-precipitation method with different Li/M molar ratios (M = Ni + Mn + Co). Elemental titration evaluated by inductively coupled plasma spectrometry (ICP), structural properties studied by X-ray diffraction (XRD), Rietveld analysis of XRD data, scanning electron microscopy (SEM) and magnetic measurements carried out by superconducting quantum interference devices (SQUID) showed the well-defined α-NaFeO2 structure with cationic distribution close to the nominal formula. The Li/Ni cation mixing on the 3b Wyckoff site of the interlayer space was consistent with the structural model [Li1−yNiy]3b[Lix+yNi(1−x)/3−yMn(1−x)/3Co(1−x)/3]3aO2 (x = 0.02, 0.04) and was very small. Both Rietveld refinements and magnetic measurements revealed a concentration of Ni2+-3b ions lower than 2%; moreover, for the optimized sample synthesized at Li/M = 1.10, only 1.43% of nickel ions were located into the Li sublattice. Electrochemical properties were investigated by galvanostatic charge-discharge cycling. Data obtained with Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 reflected the high degree of sample optimization. An initial discharge capacity of 150 mAh g−1 was delivered at 1 C-rate in the cut-off voltage of 3.0-4.3 V. More than 95% of its initial capacity was retained after 30 cycles at 1 C-rate. Finally, it is demonstrated that a cation mixing below 2% is considered as the threshold for which the electrochemical performance does not change for Li1+x(Ni1/3Mn1/3Co1/3)1−xO2.  相似文献   

4.
Chromium-deficient Nd0.75Ca0.25Cr1−xO3−δ (0.02 ≤ x ≤ 0.06) oxides are synthesized and assessed as a novel ceramic interconnect for solid oxide fuel cells (SOFCs). At room temperature, all the samples present single perovskite phase after sintering at 1600 °C for 10 h in air. Cr-deficiency significantly improves the electrical conductivity of Nd0.75Ca0.25Cr1−xO3−δ oxides. No structural transformation occurs in the Nd0.75Ca0.25Cr1−xO3−δ oxides in the temperature range studied. Among all the samples, the Nd0.75Ca0.25Cr0.98O3−δ sample with a relative density of 96.3% exhibits the best electrical conductivity of 39.0 and 1.6 S cm−1 at 850 °C in air and hydrogen, respectively. The thermal expansion coefficient of Nd0.75Ca0.25Cr0.98O3−δ sample is 9.29 × 10−6 K−1 in the temperature range from 30 to 1000 °C in air, which is close to that of 8 mol% yttria stabilized zirconia electrolyte (10.3 × 10−6 K−1) and other cell components. The results indicate that Nd0.75Ca0.25Cr0.98O3−δ is a potential interconnect material for SOFCs.  相似文献   

5.
The relatively high redox potential in the olivine-type LiMPO4 (M = Mn, Fe, Co, Ni) materials has largely been explained by the M–O–P inductive effect which increases the ionic character of transition metal atoms. Here, we identify the additional perturbative effect that slightly but systematically shifts the redox potential. The substitution of iron by manganese in the olivine LiMPO4 framework raises both of the Fe3+/Fe2+ and Mn3+/Mn2+ redox potentials by ∼0.1 V. The overall volume expansion upon Mn substitution in the whole Lix(MnyFe1−y)PO4 system possibly increases the average metal-oxide bond length and hence the ionicity of each transition metal. The voltage shift in a single cell is small but should be significant in a larger-scale battery where there exist a large number of series connections. The kinetic shift for each of the Fe3+/Fe2+ and Mn3+/Mn2+ redox reactions is also investigated.  相似文献   

6.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

7.
A series of LiFe1−xMnxPO4/C materials with high Mn content (0.7 ≤ x ≤ 0.9) are synthesized by solid state reaction. The samples have mesoporous structure with an average pore size of 25 nm, particle size around 200-300 nm, crystalline size around 30 nm and specific areas around 50 m2 g−1. Their electrochemical performances are studied and the reversible capacity and rate performance decrease with the increase of Mn content. The redox potential of the Fe2+/Fe3+ and Mn2+/Mn3+ redox couple also shift accordingly. The overpotential value of the Mn2+/Mn3+ redox couple (80 mV) is close to that of the Fe2+/Fe3+ couple (60 mV) in all three compositions and shows a maximum (∼300 mV) in the regions of voltage transition.  相似文献   

8.
Phase evolution, structure, thermal property, morphology, electrical property and reactivity of a perovskite-type cathode system, La0.75Sr0.25 Mn0.95−xCoxNi0.05O3+δ (0.1 ≤ x ≤ 0.3), are reported. The samples are synthesized using metal acetates by the Pechini method. A perovskite-type phase is formed after calcination at ∼700 °C and a rhombohedral symmetry of R – 3c space group is stabilized at ∼1100 °C. An increase in x decreases the unit cell volume linearly, accompanying with a linear decrease in bond lengths and tilt angle. The differential thermal analysis suggests the phase stabilization for a temperature range, 50–1100 °C. The thermo-gravimetric, thermal expansion, and electrical and ionic conductivities studies suggest presence of a Jahn–Teller transition at ∼260–290 °C. The samples with x = 0.1 mol exhibit electrical conductivity of ∼55 S cm−1 at ∼600 °C, activation energy of ∼0.13 eV, coefficient of thermal expansion of ∼12 × 106 °C−1, crystallite size of ∼45 nm, Brunauer–Emmett–Teller (BET) surface area of 1.26 m2 g−1 and average particle size of ∼0.9 μm. A fairly high ionic conductivity, 5–9 × 10−2 S cm−1 makes the sample with x = 0.1 mole suitable for intermediate-temperature solid oxide fuel cell cathode applications. The experimental results are discussed with the help of the defect models proposed for La1−xSrxMnO3+δ.  相似文献   

9.
In order to develop co-fired yttrium-stabilized zirconia (YSZ)-based solid oxide fuel cells (SOFCs), stable and easily sintered Y0.7Ca0.3Cr1−xZnxO3−δ (x = 0–0.15) perovskite oxides were synthesized by the microwave-aided sol–gel process and then examined as novel ceramic interconnect materials. (The characterizations focused on phase structure, sintering behavior, relative density, electrical conductivity and thermal expansion.) The XRD analysis indicates that a pure orthorhombic perovskite phase was obtained for all the samples. Cell volume decreases as x increases from 0 to 0.10. The Y0.7Ca0.3Cr0.9Zn0.1O3–δ (YCCZ10) powder exhibited the best sintering ability, and a relative density of 96.6% could be obtained for the sample sintered at 1400 °C for 4 h in air. The electrical conductivities of the specimens increase with the Zn2+ content at x ≤ 0.10, but then remarkably decrease at x = 0.15, which might relate to the over-range of the substitution amount of Zn (0.15) for Cr position. YCCZ10 shows a remarkable electrical conductivity of 20.9 S cm−1 at 850 °C in air, and a very suitable thermal expansion coefficient value of 10.8 × 10−6 K−1 (YSZ: ∼10.8 × 10−6 K−1). These investigations have indicated that YCCZ10 is a promising interconnect material for co-fired YSZ-based SOFCs.  相似文献   

10.
Layer-structured Zr doped Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 (0 ≤ x ≤ 0.05) were synthesized via slurry spray drying method. The powders were characterized by XRD, SEM and galvanostatic charge/discharge tests. The products remained single-phase within the range of 0 ≤ x ≤ 0.03. The charge and discharge cycling of the cells showed that Zr doping enhanced cycle life compared to the bare one, while did not cause the reduction of the discharge capacity of Li[Ni1/3Co1/3Mn1/3]O2. The unchanged peak shape in the differential capacity versus voltage curve suggested that the Zr had the effect to stabilize the structure during cycling. More interestingly, the rate capability was greatly improved. The sample with x = 0.01 presented a capacity of 160.2 mAh g−1 at current density of 640 mA g−1(4 C), corresponding to 92.4% of its capacity at 32 mA g−1(0.2 C). The favorable performance of the doped sample could be attributed to its increased lattice parameter.  相似文献   

11.
High-quality nano-sized Ce0.8Gd0.2−xDyxO2−δ (0 ≤ x ≤ 0.2) powders are synthesized by a solution combustion process. The calcined powders are composed of a ceria-based single phase with a cubic fluorite structure and are nanocrystalline nature, i.e., 15-24 nm in crystallite size. The addition of an intermediate amount of Dy3+ (0.03 ≤ x ≤ 0.16) for Gd3+ in Ce0.8Gd0.2O2−δ decreases the electrical conductivity. On the other hand, the doping of a small amount of Dy3+ (0.01 ≤ x ≤ 0.02) and of a large amount of Dy3+ (0.17 ≤ x ≤ 0.19) leads to an increase in conductivity. The Ce0.8Gd0.03Dy0.17O2−δ shows the highest electrical conductivity (0.215 S cm−1) at 800 °C.  相似文献   

12.
Several substituted titanates of formula Li4−xMgxTi5−xVxO12 (0 ≤ x ≤ 1) were synthesized (and investigated) as anode materials in rechargeable lithium batteries. Five samples labeled as S1–S5 were calcined (fired) at 900 °C for 10 h in air, and slowly cooled to room temperature in a tube furnace. The structural properties of the synthesized products have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transmission infrared (FTIR). XRD explained that the crystal structures of all samples were monoclinic while S1 and S3 were hexagonal. The morphology of the crystal of S1 was spherical while the other samples were prismatic in shape. SEM investigations explained that S4 had larger grain size diameter of 15–16 μm in comparison with the other samples. S4 sample had the highest conductivity 2.452 × 10−4 S cm−1. At a voltage plateau located at about 1.55 V (vs. Li +), S4 cell exhibited an initial specific discharge capacity of 198 mAh g−1. The results of cyclic voltammetry for Li4−xMgxTi5−xVxO12 showed that the electrochemical reaction was based on Ti4+/Ti3+ redox couple at potential range from 1.5 to 1.7 V. There is a pair of reversible redox peaks corresponding to the process of Li+ intercalation and de-intercalation in the Li–Ti–O oxides.  相似文献   

13.
Layered positive electrode materials for rechargeable lithium-ion batteries of the general formula Li[Mn0.5−x/2Ni0.5−x/2Cox]1−yMyO2 (x ≤ 1/3, 0 ≤ y ≤ 0.05) were synthesized by a solid state route. The effect of doping elements M on the electrochemical performance was investigated. It was found that doping with niobium or tantalum has a positive effect on the cycling stability compared to the undoped parent compounds (y = 0). High discharge capacities, excellent cycling stabilities and high rate capabilities were achieved.  相似文献   

14.
Hydrogen absorption/desorption has been investigated in the three series of solid solution bcc alloys Ti35VxCr65−x (x = 18,22), Ti40VxMn50−xCr10 (x = 32,36) and TixCr97.5−xMo2.5 (x = 43,46). It has been found that the H absorption at pressures smaller than 1 bar can only occur after elimination of the oxide films by heating the alloys to temperatures higher than 600 K. Hydrogen desorption from pre-loaded materials (nH = H/Me ≤ 0.27) takes place on heating at much lower temperatures in the Ti40VxMn50−xCr10 and Ti35VxCr65−x than in the TixCr97.5−xMo2.5 alloys. The H diffusion parameters W and Do deduced from high temperature (>450 K) absorption experiments are as follows: W = 0.318 ± 0.005 eV, Do = (4 ± 1)×10−7 m2/s for Ti40VxMn50−xCr10; W = 0.32 ± 0.02 eV, Do = (3 ± 2)×10−7 m2/s for Ti35VxCr65−x; W = 0.79 ± 0.06 eV, Do = (4 ± 2)×10−8 m2/s for TixCr97.5−xMo2.5. The higher value of the activation energy for H diffusion in Mo containing alloys is most likely due to remarkable attractive interactions between H and Mo atoms.  相似文献   

15.
The effect of Fe substitution for Co on the crystal chemistry, thermal and electrical properties, and catalytic activity for oxygen reduction reaction of the layered LnBaCo2−xFexO5+δ (Ln = Nd and Gd) perovskite has been investigated. The air-synthesized LnBaCo2−xFexO5+δ samples exhibit structural change with increasing Fe content from tetragonal (0 ≤ x ≤ 1) to cubic (1.5 ≤ x ≤ 2) for the Ln = Nd system and from orthorhombic (x = 0) to tetragonal (0.5 ≤ x ≤ 1) for the Ln = Gd system. The thermal expansion coefficient (TEC) and electrical conductivity decrease with increasing Fe content in LnBaCo2−xFexO5+δ. While the substitution of a small amount of Fe (x = 0.5) for Co leads to slightly improved performance in solid oxide fuel cells (SOFC), larger Fe contents (x ≥ 1.0) deteriorate the fuel cell performance. In the Ln = Gd system, the better performance of the x = 0.5 sample is partly due to the improved chemical stability with the LSGM electrolyte at high temperatures. With an acceptable electrical conductivity of >100 S cm−1 at 800 °C, the x = 0.5 sample in the LnBaCo2−xFexO5+δ (Ln = Nd and Gd) system offers promising mixed oxide-ion and electronic conducting (MIEC) properties.  相似文献   

16.
Scheelite-type, LaxCa1−xMoO4+δ electrolyte powders, are prepared by the sol-gel process. The crystal structure of the samples is determined by employing the technique of X-ray diffraction (XRD). According to XRD analysis, the continuous series of LaxCa1−xMoO4+δ (0 ≤ x ≤ 0.3) solid solutions have the structure of tetragonal scheelite. Their lattice parameters are greater than that of the original sample, and increase with increasing values of x in the La-substituted system. Results of sinterability and electrochemical testing reveal that the performances of La-doped calcium molybdate are superior to that of pure CaMoO4. LaxCa1−xMoO4+δ ceramics demonstrate higher sinterability. The La0.2Ca0.8MoO4+δ sample that achieved 96.5% of the theoretical density was obtained after being sintered at 1250 °C for 4 h. The conductivity increases with increasing lanthanum content, and a total conductivity of 7.3 × 10−3 S cm−1 at 800 °C could be obtained in the La0.2Ca0.8MoO4+δ compound sintered at 1250 °C for 4 h.  相似文献   

17.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

18.
LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are prepared, and their structural and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetric (DSC) and charge–discharge test. The results show that well-ordering layered LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are successfully prepared in air at 850 °C. The increase of the Co content in LiNi0.6Mn0.4−xCoxO2 leads to the acceleration of the grain growth, the increase of the initial discharge capacity and the deterioration of the cycling performance of LiNi0.6Mn0.4−xCoxO2. It also leads to the enhancement of the ratio Ni3+/Ni2+ in LiNi0.6CoxMn0.4−xO2, which is approved by the XPS analysis, resulting in the increase of the phase transition during cycling. This is speculated to be main reason for the deteriotion of the cycling performance. All synthesized LiNi0.6CoxMn0.4−xO2 samples charged at 4.3 V show exothermic peaks with an onset temperature of larger than 255 °C, and give out less than 400 J g−1 of total heat flow associated with the peaks in DSC analysis profile, exhibiting better thermal stability. LiNi0.6Co0.05Mn0.35O2 with low Co content and good thermal stability presents a capacity of 156.6 mAh g−1 and 98.5% of initial capacity retention after 50 cycles, showing to be a promising cathode materials for Li-ion batteries.  相似文献   

19.
Fine-sized Li–Co–Mn–O cathode particles with various ratios of cobalt and manganese components were prepared by conventional solid-state reaction method using the nano-sized precursor particles. The nano-sized precursor particles of cobalt and manganese components were prepared by spray pyrolysis. The LiCo1−xMnxO2 (0.1 ≤ x ≤ 0.3) particles had finer size than that of the pure LiCoO2 particles. Manganese component disturbed the growth of the LiCo1−xMnxO2 cathode particles prepared by solid-state reaction method. The initial discharge capacities of the layered LiCo1−xMnxO2 (0 ≤ x ≤ 0.3) cathode particles decreased from 144 to 136 mAh g−1 when the ratios of Co/Mn components were changed from 1/0 to 0.7/0.3. The mean sizes of the spinel LiMn2−yCoyO4 (0 ≤ y ≤ 0.2) cathode particles decreased from 650 to 460 nm when the ratios of Mn/Co components were changed from 2/0 to 1.8/0.2. The initial discharge capacities of the LiMn2−yCoyO4 (0 ≤ y ≤ 0.2) cathode particles decreased from 119 to 86 mAh g−1 when the ratios of Mn/Co components were changed from 2/0 to 1.8/0.2.  相似文献   

20.
A (Ni1/3Co1/3Mn1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 (0 ≤ x ≤ 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 products were highly uniform, having a narrow particle size distribution (10-μm average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号