首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental testing was completed to study the load/displacement and energy-absorption characteristics of AA6061-T6 round extrusions under a cutting deformation mode. A heat-treated 4140 steel alloy cutter was designed and manufactured with four cutting blades of approximate average thickness of 1.18 mm to penetrate through the round AA6061-T6 extrusions. The specimens utilized in this experimental investigation were tubes of lengths 200 and 300 mm with a nominal wall thickness of 3.175 and an external diameter of 50.8 mm. Results from the experimental tests showed that the cutting deformation mode exhibited a high average crush force efficiency of 0.95 compared to average values of 0.66 and 0.20 for progressive folding and global bending deformation modes, respectively. An almost constant cutting force was observed during the cutting deformation process. For both the 200 and 300 mm length tubes, the average total energy absorption was observed to be 6.11 kJ, which was independent of tube length. The mean steady-state cutting force observed was 45.58 kN and a fair correspondence was found between the theoretical predictions and the experimental results.  相似文献   

2.
Thin-walled structures usually collapse in Eulerian buckling mode under oblique loads. Energy absorption capacity and crush force efficiency of the structure in this type of collapse are low. Collapse initiators are used to improve these properties. In this research, effect of collapse initiators on energy absorption characteristics of square tubes under oblique quasi-static loads is investigated both experimentally and numerically. Initiators are in the form of cuttings on the tube corners. Results show that collapse initiators in most of the specimens change deformation mode from general buckling to progressive buckling and decrease considerably the peak load; therefore increase crush force efficiency. Furthermore, effect of location and number of initiators is studied. There is good agreement between the numerical results and data from experiments.  相似文献   

3.
This paper investigates the axial compressive behaviour of short concrete-filled elliptical steel columns using the ABAQUS/Standard solver, and a new confined concrete stress-stain model for the concrete-filled elliptical steel hollow section is proposed. The accuracy of the simulation and the concrete stress-strain model was verified experimentally. The stub columns tested consist of 150 × 75 elliptical hollow sections (EHSs) with three different wall thicknesses (4 mm, 5 mm and 6.3 mm) and concrete grades C30, C60 and C100. The compressive behaviour, which includes the ultimate load capacity, load versus end-shortening relationship and failure modes, were obtained from the numerical models and compared against the experimental results, and good agreements were obtained. This indicated that the proposed model could be used to predict the compressive characteristics of short concrete-filled elliptical steel columns.  相似文献   

4.
In this paper, the crush behavior of segmented circular tubes, made of aluminum alloy 6061 and subjected to quasi-static axial loading, has been analytically and experimentally investigated. Crush behavior of these tubes was modeled by integrating available analytical models and superposition principle. In the certain overall length of segmented circular tubes, effects of changing the wall thickness and length of each segment on the energy absorption characteristics have been evaluated. One successful approach toward obtaining lightweight energy absorbers with high energy absorption capacity is the use of thin-walled Tailor-Made Tubes (TMTs). In these tubes, the thickness and mechanical properties of the wall vary along the length of the tube. Applying these tubes; crush force can be controlled by changing the length and thickness of each tube segment, improving the performance of energy absorbing systems. Results of this research showed that Tailor-made tubes have higher energy absorption capacity at identical crush lengths, and they can absorb more energy per unit weight compared to simple tubes with constant wall thickness and mechanical properties. Moreover, for the same specific energy absorption, the TMTs exhibit a considerable reduction in the magnitude of the mean and initial maximum crush forces. With the use of TMTs, the maximum crush force shifts to the end of the crush range, reducing the exerted deceleration on occupants and equipments. Comparing mean crush force and specific energy absorption obtained by analytical and experimental approaches, it was observed that combining current analytical models with superposition principle can prepare a set of analytical formulations to predict TMTs crush characteristics within an acceptable proximity.  相似文献   

5.
The hole-type crush initiators according to various ratios of thickness to width (t/b) were studied. And the approximate equation to quickly predict the optimum size of the crush initiator by impact velocity for each ratio of thickness to width was introduced. Also, the simple rectangular and circular dent-type crush initiators of a front frame with non-uniform closed-hat section in a vehicle were studied for frontal crashworthiness according to various ratios of thickness to width (t/b).The optimum size and dent depth of a crush initiator, whose location is decided by the homogenization method, were studied by using design of experiment and response surface method. Design analysis results of the dent-type crush initiators were compared with those of the hole-type crush initiator of the same size as the dent-type crush initiators.The rectangular dent-type crush initiator absorbed more crash energy than the circular dent-type crush initiator. Dynamic mean crushing loads of a rectangular dent-type crush initiator of size equal to that of the hole-type crush initiator designed by the homogenization method were similar to those of the hole-type crush initiator.The trend curve of the optimum size rectangular dent-type crush initiator design is similar with the trend curve of hole-type crush initiator design. Therefore, the approximate equation used to predict the optimum size of the hole-type crush initiator can be applied to find the optimum size of the rectangular dent-type crush initiator.  相似文献   

6.
This research is concentrated on the structural strength and behavior of cold-formed steel wall frame sheathed with calcium silicate board under shear load. Test specimens with two different thicknesses of sheathing were assembled, 9 mm and 12 mm, with one-side or two-side of attachment. Monotonic shear and cyclic loading tests are conducted on wall specimens utilizing two C sections connected back-to-back to be as chord studs and calcium silicate board sheathing on the exterior. Based on the test results, detailed discussions on the strength, stiffness, energy absorption, ductility ratio, and failure mode of cold-formed steel wall specimens are given. It is noted that the failure mostly occurred at the bottom track of wall specimens due to the large deformation or tearing failure of track. The wall strength is not affected by the change of sheathing's thickness significantly, but wall frames attached with two-side calcium silicate board sheathing provide higher resisting strength and stiffness than those attached with one-side sheathing. In this study, test results are also used to compare with the previous study that single chord stud was used in the assembly of wall frame. In addition, the suggested response modification factor of the wall sheathed with calcium silicate board is proposed for design purpose.  相似文献   

7.
B.P. DiPaolo  J.G. Tom 《Thin》2009,47(8-9):984-997
An experimental investigation was performed to study the effects of ambient temperature on axial-crush response of steel, square box components. Test specimens were obtained from commercially produced, welded tube lengths of ASTM A36 and ASTM A513 Type 1 plain low-carbon steels and AISI 316 and AISI 304 austenitic stainless steels. Quasi-static testing was performed at different temperatures using a universal testing machine with an environmental chamber. Removable grooved caps for end constraints and collapse initiators in the form of shallow-machined groove patterns on specimen sidewalls were used to restrict the response of the test specimens to a specific configuration (fold-formation process and the corresponding axial load–axial displacement curve shape) of the symmetric axial-crush response mode. Overall, results indicate that, for three ambient temperatures within automotive thermal operating conditions, axial crush can be restricted to a specific configuration response and a controlled and repeatable energy-absorption process can be obtained. However, depending on the material type, secondary folding-phase load and energy-absorption crush characteristics can be significantly influenced by ambient temperature.  相似文献   

8.
Structural steel special moment frames are designed to resist earthquakes with substantial inelastic energy dissipation. The ductile beam‐to‐column connections become more popular over these years by dissipating the earthquake input energy at beam ends. The paper provides a comprehensive study of a high‐strength slotted bolted connection (SBC). Slotted holes instead of round holes are used for the connection such that frictional sliding could be developed. Experimentally, a standard bolt–weld connection as well as three similar slotted bolted connections were designed and tested. The load‐carrying capacities, the ductile deformations, the energy dissipation capacities, and the hysteretic characteristics of the specimens were presented. The overall performance of the steel connections by replacing the circular holes with slotted holes is evaluated, and the design recommendations of the flange gusset plate with slotted holes are provided. Numerically, the nonlinear SBC behavior was simulated and calibrated against the experimental results. The SBC effectiveness as well as the parametrical influences have been presented in details. Results show that the friction slippage behaviors of the specimens with slotted holes provide better ductility, higher plastic deformation capacity, and increased load‐resisting capacities near the ultimate strength.  相似文献   

9.
Abstract

This paper presents a new strengthening technique for square-reinforced concrete (RC) columns by circularisation with reactive powder concrete (RPC) and wrapping with fibre-reinforced polymer (FRP). RC column specimens were tested, divided into four groups of four specimens based on the strengthening technique: four reference square specimens (150?mm side length) without any strengthening, four were wrapped with two layers of carbon fibre-reinforced polymer (CFRP) and the remaining eight were strengthened by changing the square cross-section to a 240?mm diameter circle with RPC jacket. Four of the RPC jacketed specimens were left unwrapped, while the last four were wrapped with two layers of CFRP. From each group, one specimen was tested under concentric axial load, two were tested under eccentric axial load and one was tested under four-point bending. It was found that using the RPC for circularisation and strengthening of existing square RC columns is an effective technique to significantly increase their axial carrying capacity, ultimate flexural load and energy absorption. Wrapping the circularised RC columns with CFRP prevented the failure of the RPC jacket at the corners of the existing square RC columns under the axial load, and improved the ultimate load as well as the energy absorption of the circularised RC columns.  相似文献   

10.
This paper presents the results of an experimental study conducted to characterize the structural behaviour of reinforced concrete beams corroded whilst subjected to constant sustained service loads. Corrosion of tensile steel bars was induced by an accelerated corrosion process using a 5% solution of NaCl and a constant impressed current. Four RC beams were tested, each with a width of 153 mm, a depth of 254 mm and a length of 3000 mm. Beams were tested whilst under a load equivalent to 1%, 8% and 12% of the ultimate load. Longitudinal tensile and compressive strains were monitored during the corrosion process and used to determine the variation of the depth of the neutral axis, the curvature and the second moment of area of beams with the time of electrolysis. The results indicate that the longitudinal strains, the depth of the neutral axis and the curvature of beams depend on both the level of corrosion and the applied service load whilst the second moment of area is mostly influenced by the level of corrosion.  相似文献   

11.
This research is focused on the experimental study of the structural strength of cold-formed steel wall frames with sheathing under monotonic shear loading. Two aspect ratios, 1.0 and 2.0 were utilized in the design of wall specimens. Three different kinds of sheathing material, gypsum board, calcium silicate board, and oriented-strand board, with two different thicknesses (9 and 12 mm) were adopted in the test specimens. The ultimate strength, stiffness, energy absorption, and ductility ratio were studied for each test specimen. In final, the ductility ratios of the cold-formed steel wall frames similar to the wall configuration conducted in this study are proposed.  相似文献   

12.
This study aims to investigate the efficiency of waste tyre rubber-filled concrete to improve the deformability and energy absorption capacity of RC columns by considering different concrete compressive strength, size of waste tyre rubber particles and rubber content. Twelve column specimens were tested using concrete of compressive strength 24 and 28 MPa mixed with 0.6 and 1 mm tyre rubber particles. For each concrete batch, 27 control specimens were prepared to examine the concrete properties. Using waste tyre rubber-filled concrete leads to a slightly lower compressive strength and modulus of elasticity, but the curvature ductility can increase up to 90%. It is concluded that this type of concrete can offer good energy dissipation capacity and ductility, which makes it suitable for seismic applications.  相似文献   

13.
The paper suggests the introduction of patterns to the surface of conventional thin-walled square tubes to improve the energy absorption capacity under axial compressive loads. A quasi-static axial crushing analysis has been conducted numerically by the nonlinear explicit finite element code LS-DYNA. Two types of patterns constructed using the basic pyramid elements were introduced. Type A pattern was aimed at triggering the extensional mode for relatively thin square tubes whereas type B pattern was intended to develop new collapse mode capable of absorbing more energy during collapse. A total of 30 tubes with a length of 120 mm, thickness 1.2 mm and widths of 40 or 60 mm were simulated. Numerical results showed that all tubes with type A patterns developed the extensional collapse mode instead of the symmetric collapse mode and absorbed about 15–32.5% more energy than conventional thin-walled square tubes with a mass increase less than 5%. Meanwhile, a new collapse mode named octagonal collapse mode was observed for tubes with type B pattern and the energy absorption of tubes developing this mode increased by 54–93% compared with the conventional tube. The influence of various configurations of the patterns on the deformation and energy absorption of the tubes was also discussed. The paper opens up a new avenue in design of high energy absorption components.  相似文献   

14.
Effect of different size of planer joint enlargement as a noninvasive and practical strategy for seismic retrofit of gravity load designed external reinforced concrete beam‐column connections was experimentally investigated. The joint region was enlarged using steel angles that are mounted using prestressed cross‐ties. Reverse cyclic load tests on five half‐scale control and retrofitted external RC beam‐column connections were conducted. Three different size of planer joint enlargement being 180, 140, and 90 mm were considered for retrofitted specimens. The performance of the retrofitted specimens is compared with that of the control gravity load designed beam‐column connections, in terms of load–displacement hysteresis curve, energy dissipation and ductility capacities, and global strength and stiffness degradation behavior. The experimental results showed that increasing the size of planer joint enlargement significantly enhances the seismic capacity of the retrofitted connections, in terms of strength, stiffness, energy dissipation, and ductility capacity and also planer joint enlargement can relocate beam plastic hinges to outside the joint panel.  相似文献   

15.
The paper presents results of an investigation conducted to study the impact resistance of steel fibre reinforced concrete containing fibres of mixed aspect ratio. An experimental investigation was planned in which 108 plain concrete and SFRC beam specimens of size 100 × 100 × 500 mm were tested under impact loading. The specimen incorporated three different volume fractions i.e. 1.0%, 1.5% and 2.0% of corrugated steel fibres. Each volume fraction incorporated mixed steel fibres of size 0.6 × 2.0 × 25 mm and 0.6 × 2.0 × 50 mm in different proportions. The drop weight type impact tests were conducted on the test specimens and the number of blows of the hammer required to induce first visible crack and ultimate failure of the specimen were recorded. The results are presented in terms of number of blows required as well as impact energy at first crack and ultimate failure. It has been observed that concrete containing 100% long fibres at 2.0% volume fraction gave the best performance under impact loading.  相似文献   

16.
Four specimens were tested for monotonically increasing bending. Another four identical specimens, except for possible variations in concrete strength, were tested for reversed cyclic bending. The hollow cylindrical specimens were 128 inches (3.25 m) long and 16 inches (406 mm) in outside diameter with wall thickness of two inches (50.8 mm) and reinforced by both longitudinal and circumferential steel.

Two parameters were varied, the axial load and the longitudinal steel ratio. The effects of the axial load and the longitudinal steel ratio on the specimens stiffness, curvature ductility and energy absorption were quite apparent.

The test results confirmed that the use of ductility factors in evaluating energy absorption or dissipation in reinforced concrete hollow circular sections under bending does not take into account the effect of the stiffness degradation or the pinching effects that are found in the hysteretic behaviour of sections subjected to cyclic bending coupled with high axial forces.  相似文献   


17.
J.D. Reid 《Thin》1996,26(2):83-103
The automotive midrail is the main load carrying/energy absorbing component in a frontal vehicle crash. Three separate midrails, from three different manufacturers, each of a different size class of vehicle, and each with different crush modes, were found to exhibit the same sensitivity to variations in material thickness and stress-strain properties. From the results it was determined that a general design guideline for crashworthiness could be stated as: For every 10% change in thickness there is approximately a 14% change in energy absorption capability for a crushing midrail, while for every 10% change in material strength there is approximately a 7·3% change in energy absorption capability. The proposed design guideline can be used to help determine suitable modifications to make a structure more crashworthy and, additionally, to determine how manufacturing variations may affect the crashworthiness of a vehicle.  相似文献   

18.
Rockbolt and surface support systems such as shotcrete and thin spray-on liners (TSLs) are widely used as underground support elements to resist the convergence and maintain the stability of excavations. In order to evaluate the bearing capacity of combined reinforced rockbolt and surface support systems in preventing sliding along discontinuities, double shear tests (DST) was carried out using fully grouted rockbolts installed in three separate blocks. These blocks were covered with a 5 mm layer of TSL followed by a 50 mm layer of shotcrete. Two rockbolts were installed at an inclined angle of 45°, and 20 kN lateral constraining force was applied to clamp together the three blocks. Three different support combinations were tested: 50 mm shotcrete only, 5 mm TSL only, and combined shotcrete and TSL, with and without rockbolts. It was confirmed that the shotcrete plays a mechanical role in resisting the shear load, and TSLs increase the bond strength between shotcrete and substrate replicating the side wall of an excavation. The contribution of rockbolt and surface support system in resisting joint movement was also compared. The failure mechanism of rock substrate, rockbolt and surface support system was also analysed.  相似文献   

19.
The concrete filled steel tubular (CFST) members become very popular in the construction industry and, at the same time, aging of structures and member deterioration are often reported. The actions like implementation of new materials and strengthening techniques become essential to combat this problem. This research work aimed to investigate the structural improvements of CFST sections with normal strength concrete externally bonded with fibre reinforced polymer (FRP) composites. For this study, compact mild steel tubes were used with the main variable being FRP characteristics. Carbon fibre reinforced polymer (CFRP) fabrics were used as horizontal strips (lateral ties) with several other parameters such as the number of layers, width and spacing of strips. Among thirty specimens, twenty seven were externally bonded with 50 mm width of CFRP strips with a spacing of 20 mm, 30 mm and 40 mm and the remaining three specimens were unbonded. Experiments were undertaken until column failure to fully understand the influence of FRP characteristics on the compressive behaviour of square CFST sections including their failure modes, axial stress–strain behaviour, and load carrying capapcity. From the test results, it was found that the external bonding of CFRP strips provides external confinement pressure effectively and delays the local buckling of steel tube and also improves the load carrying capacity further. Finally, an analytical model was proposed herein for predicting the axial load carrying capacity of strengthened CFST sections under compression.  相似文献   

20.
This paper presents results of testing 16 specimens, 12 of which as columns under different eccentricities and four as beams under four point loading regime. All 16 specimens were circular in cross section and were made of reinforced concrete. Four specimens served as reference specimens and were just made of reinforced concrete. The next four specimens were wrapped with carbon fibre reinforced polymers (CFRP). The next four specimens had steel fibres added to the concrete. The final four specimens were reinforced with steel fibres and wrapped with CFRP. From each group of specimens, one specimen was tested as a column under a concentric load, the second specimen was tested as a column under 25 mm eccentricity, the third specimen was tested as a column under 50 mm eccentricity, and the final specimen was tested as a beam under four point loading regime. The experimental programme proved that the introduction of fibres as well as wrapping the specimens with FRP improve the properties of concrete, especially its ductility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号