首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以间苯二酚和甲醛为原料,采用溶胶-凝胶法原位合成WC纳米颗粒制备了碳化钨/碳气凝胶(WC/CAs);以WC/CAs为载体,利用微波加热乙二醇还原法制备了Pt/WC/CAs催化剂。运用循环伏安法(CV)、线性扫描(LSV)、计时电流法(CA)、能谱(EDS)、透射电子显微镜(TEM)和X射线衍射(XRD)等技术分析Pt/WC/CAs催化剂的组成、结构及其对甲醇的电催化氧化活性的影响。实验结果表明,载体中WC纳米颗粒的加入促进Pt贵金属颗粒对甲醇的电催化氧化活性,正扫电流峰ip与扫描速率的平方根v1/2线性相关,Pt/WC/C催化氧化甲醇的过程受扩散控制;且电催化活性比Pt/C要好。  相似文献   

2.
通过浸渍还原法以乙二醇为还原剂制备了石墨烯及石墨烯负载的铂催化剂(Pt/Graphene),通过XRD、SEM、Raman对材料进行了分析,通过电化学测试与Pt黑催化剂对比,试验数据表明:Pt/Graphene比Pt黑催化剂电化学活性面积提高了28%,对甲醇电催化氧化峰电流提高了52%,电化学活性面积和甲醇氧化反应的稳定性均有所提高。  相似文献   

3.
使用溶胶凝胶法制备了具有电催化活性的Pt-SnO2/C催化剂,并采用XRD、场透射电子显微镜及电化学测试手段对其进行表征。XRD及场发射透射电子显微镜的结果显示所制得的催化剂平均粒径约为4~20nm。采用循环伏安,交流阻抗的测试手段测试了其在乙醇体系中的电催化活性。该催化剂在乙醇电氧化过程中具有很好的稳定性和较高的电催化活性,其电催化活性高于Pt/C。  相似文献   

4.
刘金超  杨辑 《广东化工》2014,41(24):6-7
文章简要阐述了微波电介质加热原理,解释了Pt/C催化剂制备时分散体系的选择依据,考察了脉冲微波加热与连续微波加热两种模式对微波辅助乙二醇法合成Pt/C催化剂甲醇电催化氧化性能的影响。研究发现:脉冲微波加热模式制备的催化剂的性能显著好于连续微波加热模式,当微波输出功率为620 W,采用10 s ON/10 s OFF的脉冲模式加热5次时,制得的Pt/C催化剂的甲醇电氧化性能最好。  相似文献   

5.
用微波间断升温法制备了3种Pt/C催化剂,运用循环伏安和线行扫描方法测试甲醇和吸附态CO在不同方法制备的Pt/C催化剂上的电催化氧化情况。发现在酸性溶液中,对于相同Pt载量的Pt(2)和Pt(3)催化剂,Pt(3)具有较小的Pt平均粒径及较高的电催化活性;对于具有较高Pt载量的Pt(1)催化剂,具有最小的平均粒径和最高的电催化活性。  相似文献   

6.
采用水热法制备了高分散碳载Pt/C和Pt-SnOJC电催化剂.采用XRD、SEM、TEM和激光粒度仪等方法对制得的纳米催化剂进行了表面微观结构分析.采用电化学工作站测试循环伏安曲线(CV)等表征Pt/C和Pt-SnO2/C纳米催化剂电催化活性.测试结果表明,Pt-SnO2/C纳米催化剂的峰电流密度(131.05 mA·cm-2)是Pt/C催化剂的峰电流密度(65.48 mA·cm-2)的2倍;Pt-SnO2/C催化的电化学表面积(108.4 m2·g-1)远高于Pt/C催化剂的电化学表面积(99.14 m2· g-1);Pt-SnO2/C纳米粒子比Pt/C纳米粒子具有更强的抗CO中毒能力和更高的电催化活性.  相似文献   

7.
采用TiO2溶胶法,在不同条件下制备了碳载Pt-TiO2催化剂.通过循环伏安法(CV),计时电流法(CA)对碳载Pt-TiO2催化剂在甲醇上的电氧化特性进行了研究.结果表明不同条件制备的催化剂对甲醇的电催化氧化的催化活性不同.其中加入聚乙二醇所制得的Pt-TiO2/C催化剂对甲醇的氧化具有最佳的电催化活性和稳定性.  相似文献   

8.
采用TiO2溶胶法,选用3种不同还原剂(甲酸、甲醛、硼氢化钠)制备了碳载Pt-TiO2催化剂。通过XRD衍射,循环伏安法(CV)和计时电流法(CA)对碳载Pt-TiO2催化剂的结构及其对甲醇的电氧化特性进行了研究。结果表明不同还原剂制备的催化剂中,TiO2的结晶度不同,Pt的粒径不同,电化学比表面不同,对甲醇的电催化氧化的催化活性也不同。其中用甲酸还原所制得的碳载Pt-TiO2催化剂对甲醇的电催化氧化活性分别是采用甲醛或硼氢化钠方法的1.41倍和1.76倍。  相似文献   

9.
温度及电解液浓度对电沉积法制备Pt/C电极的影响   总被引:1,自引:1,他引:0  
用电化学沉积法在活性炭表面沉积Pt来制备Pt/C电极。发现改变电沉积温度和电解液中氯铂酸的浓度制备的Pt/C电极,对甲醇及CO氧化的电催化活性有很大不同。沉积条件为80℃、5 mmol.L-1H2PtC l6 0.5 mol.L-1H2SO4与沉积条件为25℃、15 mmol.L-1H2PtC l6 0.5 mol.L-1H2SO4时沉积出的Pt/C电极对甲醇氧化呈现出较高的电催化活性。  相似文献   

10.
用离子液体做溶剂制备碳载Pt催化剂,透射电镜结果表明,用离子液体做溶剂制备的催化剂Pt/C(A),活性组分Pt粒径小,分散的非常均匀。用这种方法制备的Pt/C(A)催化剂对乙二醇的阳极电氧化具有很高的电催化活性和稳定性。  相似文献   

11.
A novel method with ethylenediaminetetraacetic acid disodium salt (EDTA‐2Na) as a stabilizing agent was developed to prepare highly dispersed Pt nanoparticles on carbon nanotubes (CNTs) to use as proton exchange membrane (PEM) fuel cell catalysts. These nanocatalysts were obtained by altering the molar ratio of ethylenediaminetetraacetic acid disodium salt to chloroplatinic acid (EDTA‐2Na/Pt) from 1:2, 1:1, 2:1 to 3:1. The well‐dispersed Pt nanoparticles of around 1.5 nm in size on CNTs were obtained when the EDTA‐2Na/Pt ratio was maintained at 1:1. And the Pt/CNT catalyst exhibited large electrochemical active surface areas, very high electrocatalytic activity and excellent stability in the oxidation of methanol at room temperature. The Pt/XC‐72R catalyst with narrow size distribution was also prepared by this method for comparison purposes. Comparison of the catalytic properties of these catalysts revealed that the activity of the Pt/CNT catalyst was a factor of ∼3 times higher than that of the Johnson Matthey catalyst and ∼2 times higher than that of our Pt/XC‐72R catalyst, which can be assigned to the high level of dispersion of Pt nanoparticles and the particular properties of the CNT supports.  相似文献   

12.
A novel technique based on intermittent microwave heating (IMH) is used to prepare highly dispersed Pt/C catalysts. It has been proved that more than 60% Pt on carbon can be prepared by one-step procedure. The average Pt clusters on carbon are less than 5 nm with very narrow size distribution. The catalysts prepared by the present method show better performance in low temperature fuel cells.  相似文献   

13.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

14.
This research aims to enhance the activity of Pt catalysts, thus to lower the loading of Pt metal in fuel cell. Highly dispersed platinum supported on single-walled carbon nanotubes (SWNTs) as catalyst was prepared by ion exchange method. The homemade Pt/SWNTs underwent a repetition of ion exchange and reduction process in order to achieve an increase of the metal loading. For comparison, the similar loading of Pt catalyst supported on carbon nanotubes was prepared by borohydride reduction method. The catalysts were characterized by using energy dispersive analysis of X-ray (EDAX), transmission electron micrograph (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrum (XPS). Compared with the Pt/SWNTs catalyst prepared by borohydride method, higher Pt utilization was achieved on the SWNTs by ion exchange method. Furthermore, in comparison to the E-TEK 20 wt.% Pt/C catalyst with the support of carbon black, the results from electrochemical measurement indicated that the Pt/SWNTs prepared by ion exchange method displayed a higher catalytic activity for methanol oxidation and higher Pt utilization, while no significant increasing in the catalytic activity of the Pt/SWNTs catalyst obtained by borohydride method.  相似文献   

15.
Pd catalyst supported on Vulcan XC‐72 carbon black was prepared by a modified polyol process. Its performance was compared with that of Pd/C catalyst prepared by impregnation reduction method by using NaBH4 as a reducing agent for formic acid electrooxidation. Their physical characterisations were tested by means of energy dispersive analysis of X‐ray, X‐ray diffraction and transmission electron micrographs. Their activities were presented by cyclic voltammetry and chronoamperometry. The results show that the particle sizes of Pd/C catalysts prepared by modified polyol process and impregnation reduction method are 3.9 and 7.9 nm, respectively. The size dispersion of the former is narrower and more homogeneous than that of the latter. However, both of Pd/C catalysts display the characteristic diffraction peaks of a Pd face‐centred cubic (f.c.c.) crystal structure. The results of electrochemical measurements present that the Pd/C catalyst prepared by modified polyol process has the higher electrocatalytic activity and stability for formic acid electrooxidation in comparison to the Pd/C one by impregnation reduction method due to the particle size effect, and its peak current density of CV and the current of chronoamperometric curve at 1,000 s reach 33.2 and 11.2 mA cm–2, respectively.  相似文献   

16.
Cr-modified Pt/C catalysts were prepared by the chemical vapour deposition (CVD) of Cr on Pt/C, and their performance as a cathode of phosphoric acid fuel cell (PAFC) was compared with the case of catalysts containing Cr added by impregnation (IMP).The catalyst prepared by CVD showed a higher activity for oxygen reduction reaction (ORR) than one prepared by IMP. There was an optimum amount of Cr that yielded the maximum mass activity of the catalyst because the gain in the intrinsic activity due to the promotional effect of Cr was counterbalanced by the loss of exposed Pt surface area as a result of the Cr introduction. Nevertheless, the activity increase at the optimum amount of Cr was greater for the CVD catalyst than for the IMP catalyst. Also, the optimum amount of Cr to yield the maximum activity was smaller for the former catalyst [Cr/Pt]CVD = 0.6, than for the latter, [Cr/Pt]IMP = 1.0.The enhancement of the Pt catalyst activity by Cr addition is attributed to two factors: changes in the surface Pt-Pt spacing and the electronic modification of the Pt surface. The formation of a Pt-Cr alloy, as confirmed by X-ray diffraction, decreased the lattice parameter of Pt, which was beneficial to the catalyst activity for ORR. X-ray photoelectron spectroscopy results showed that the binding energies of Pt electrons were shifted to higher energies due to Cr modification. Accordingly, the electron density of Pt was lowered and the Pt-O bond became weak on the Cr-modified catalysts, which was also beneficial to the catalyst activity for ORR.The promotion of oxygen reduction on Cr-modified catalysts was confirmed by measuring the cyclic voltammograms of the catalysts. All the above changes were made more effectively for catalysts prepared by CVD than for those prepared by IMP because the former method allowed Cr to interact more closely with the Pt surface than the latter, which was demonstrated by the characterization of catalysts in this study.  相似文献   

17.
Supported Pt/C catalyst with 3.2 nm platinum crystallites was prepared by the impregnation—reduction method. The various preparation conditions, such as the reaction temperature, the concentration of precursor H2PtCl6 solution and the different reducing agents, and the relationship between the preparation conditions and the catalyst performance were studied. The carbon black support after heat treatment in N2 showed improved platinum dispersion. The particle size and the degree of dispersion of Pt on the carbon black support were observed by transmission electron microscopy (TEM). The crystal phase composition of Pt in the catalyst was determined by X-ray diffraction (XRD). The surface characteristics of the carbon black support and the Pt/C catalyst were studied by X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the Pt/C catalysts were evaluated from current—voltage curves of the membrane electrode assembly (MEA) in a proton exchange membrane fuel cell.  相似文献   

18.
A series of ordered mesoporous carbon (OMC) supported Pt (Pt/OMC) catalysts with a controlled Pt size from 2.7 to 6.7 nm at high Pt loading around 60 wt.% have been prepared and their electrocatalytic activities for the electrode reactions relevant to the direct methanol fuel cells have been investigated. The Pt/OMC catalysts with a high dispersion (Pt size around 3 nm) could be prepared by the use of a modified, sequential impregnation–reduction method. The Pt/OMC catalysts containing larger Pt particles were obtained by increasing reduction temperature under hydrogen flow and Pt loading, and by performing impregnation–reduction in a single cycle. The oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities of Pt/OMC catalysts as a function of Pt size were investigated at room temperature in 0.1 M HClO4 and (0.1 M HClO4 + 0.5 M methanol), respectively. The specific activity of Pt/OMC for ORR steeply increased up to 3.3 nm and became independent of Pt size from 3.3 to 6.7 nm, and the mass activity curve exhibited maximum activity at 3.3 nm. The MOR activity of Pt/OMC also exhibited the similar trend with the ORR activity, as the maximum of mass activity was also found at 3.3 nm. The results of the present work indicate that the Pt catalysts of ca. 3 nm is an optimum particle size for both ORR and MOR, and this information may be translated into design of high performance membrane electrode assembly.  相似文献   

19.
Methanol, ethanol and formic acid electrooxidations in acid medium on Pt/C and PtRu/C catalysts were investigated. The catalysts were prepared by a microwave-assisted polyol process. Cyclic voltammetry and chronoamperometry were employed to provide quantitative and qualitative information on the kinetics of methanol, ethanol and formic acid oxidations. The PtRu/C catalyst showed higher anodic current densities than the Pt/C catalyst and the addition of Ru reduced the poisoning effect.  相似文献   

20.
F. Wang  Y. Zheng  Y. Guo 《Fuel Cells》2010,10(6):1100-1107
Well‐dispersed PtSnEu/C and PtSn/C catalysts were prepared by the impregnation–reduction method using formic acid as a reductant and characterised by X‐ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersion X‐ray spectroscopy (EDX) and X‐ray photoelectron spectroscopy (XPS). The synthesised catalysts with different atomic ratios of Pt/Sn/Eu have the Pt face centered cubic (fcc) structure and their particle sizes are 3–4 nm. The PtSnEu/C catalyst is composed of many Pt (0), SnO2, Eu(OH)3, a small amount of Pt(II) and partly alloyed PtSn, but no metallic Eu. The electrochemical measurements indicate that in comparison with Pt3Sn1/C catalyst, the Pt3Sn1Eu1/C catalyst for ethanol oxidation has more negative onset potential, smaller apparent activation energy and lower electrochemical impedance so that it exhibits very high catalytic activity. Its peak current density increases by 135% and 40%, compared with Pt3Sn1/C and Pt1Ru1/C (JM) catalysts, respectively. This is because the Eu(OH)3 formed by adding Eu to PtSn/C catalyst can provide the OH group which is in favour of the removal of adsorbed intermediates and ethanol oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号