首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renewable energy continues to be a hot topic in the United States affecting security and sustainability. A model to create renewable energy portfolio is established using guidelines drawn by Oregon’s Renewable Portfolio Standard (RPS) legislation with the objective of responding to a 25% of the state electricity demand by renewable resources in 2025. The fuzzy goal programming model is adaptable to accommodate changes in energy costs and future advances in technology maturity. It can also take into consideration the preferences of policy-makers and stakeholders. This model can help to reveal the costs and benefits of complex decisions regarding renewable energy.  相似文献   

2.
Options are designed to hedge against risks to their underlying assets such as stocks. One method of forming option-hedging portfolios is using stochastic programming models. Stochastic programming models depend heavily on scenario generation, a challenging task. Another method is neutralizing the Greek risks derived from the Black–Scholes formula for pricing options. The formula expresses the option price as a function of the stock price, strike price, volatility, risk-free interest rate, and time to maturity. Greek risks are the derivatives of the option price with respect to these variables. Hedging Greek risks requires no human intervention for generating scenarios. Linear programming models have been proposed for constructing option portfolios with neutralized risks and maximized investment profit. However, problems with these models exist. First, feasible solutions that can perfectly neutralize the Greek risks might not exist. Second, models that involve multiple assets and their derivatives were incorrectly formulated. Finally, these models lack practicability because they consider no minimum transaction lots. Considering minimum transaction lots can exacerbate the infeasibility problem. These problems must be resolved before option hedging models can be applied further. This study presents a revised linear programming model for option portfolios with multiple underlying assets, and extends the model by incorporating it with a fuzzy goal programming method for considering minimum transaction lots. Numerical examples show that current models failed to obtain feasible solutions when minimum transaction lots were considered. By contrast, while the proposed model solved the problems efficiently.  相似文献   

3.
Two-sided assembly lines are especially used at the assembly of large-sized products, such as trucks and buses. In this type of a production line, both sides of the line are used in parallel. In practice, it may be necessary to optimize more than one conflicting objectives simultaneously to obtain effective and realistic solutions. This paper presents a mathematical model, a pre-emptive goal programming model for precise goals and a fuzzy goal programming model for imprecise goals for two-sided assembly line balancing. The mathematical model minimizes the number of mated-stations as the primary objective and it minimizes the number of stations as a secondary objective for a given cycle time. The zoning constraints are also considered in this model, and a set of test problems taken from literature is solved. The proposed goal programming models are the first multiple-criteria decision-making approaches for two-sided assembly line balancing problem with multiple objectives. The number of mated-stations, cycle time and the number of tasks assigned per station are considered as goals. An example problem is solved and a computational study is conducted to illustrate the flexibility and the efficiency of the proposed goal programming models. Based on the decision maker's preferences, the proposed models are capable of improving the value of goals.  相似文献   

4.
In this study a hybrid (including qualitative and quantitative objectives) fuzzy multi objective nonlinear programming (H-FMONLP) model with different goal priorities will be developed for aggregate production planning (APP) problem in a fuzzy environment. Using an interactive decision making process the proposed model tries to minimize total production costs, carrying and back ordering costs and costs of changes in workforce level (quantitative objectives) and maximize total customer satisfaction (qualitative objective) with regarding the inventory level, demand, labor level, machines capacity and warehouse space. A real-world industrial case study demonstrates applicability of proposed model to practical APP decision problems. GENOCOP III (Genetic Algorithm for Numerical Optimization of Constrained Problems) has been used to solve final crisp nonlinear programming problem.  相似文献   

5.
Fuzzy multiple objective fractional programming (FMOFP) is an important technique for solving many real-world problems involving the nature of vagueness, imprecision and/or random. Following the idea of binary behaviour of fuzzy programming (Chang 2007 Chang, C-T. 2007. Binary Behavior of Fuzzy Programming with Piecewise Membership Functions. IEEE Transactions on Fuzzy Systems, 15: 342349.  [Google Scholar]), there may exist a situation where a decision-maker would like to make a decision on FMOFP involving the achievement of fuzzy goals, in which some of them may meet the behaviour of fuzzy programming (i.e. level achieved) or the behaviour of binary programming (i.e. completely not achieved). This is turned into a fuzzy multiple objective mixed binary fractional programming (FMOMBFP) problem. However, to the best of our knowledge, this problem is not well formulated by mathematical programming. Therefore, this article proposes a linearisation strategy to formulate the FMOMBFP problem in which extra binary variable is not required. In addition, achieving the highest membership value of each fuzzy goal defined for the fractional objective function, the proposed method can alleviate the computational difficulties when solving the FMOMBFP problem. To demonstrate the usefulness of the proposed method, a real-world case is also included.  相似文献   

6.
By morphing mean-variance optimization (MVO) portfolio model into semi-absolute deviation (SAD) model, we apply multi criteria decision making (MCDM) via fuzzy mathematical programming to develop comprehensive models of asset portfolio optimization (APO) for the investors’ pursuing either of the aggressive or conservative strategies.  相似文献   

7.
In recent years, the number of direct flights between Taiwan and mainland China has grown rapidly, as charter flights have been turned into regular flights. This important issue has prompted airport ground handling service (AGHS) companies in Taiwan to enhance convenient services for passengers and to invest in airport logistics center expansion plans (ALCEP) to broaden the AGHS market. Due to their budgetary restrictions, AGHS companies need to outsource many of their services to contractors to implement these plans. This study proposes an ALCEP solution procedure to guide AGHS companies in adjusting their priority goals and selecting the best contractor according to their needs. This proposed procedure successfully solves the ALCEP problem and facilitates the assignment of contractors by considering both qualitative and quantitative methods.  相似文献   

8.
Solution procedure consisting of fuzzy goal programming and stochastic simulation-based genetic algorithm is presented, in this article, to solve multiobjective chance constrained programming problems with continuous random variables in the objective functions and in chance constraints. The fuzzy goal programming formulation of the problem is developed first using the stochastic simulation-based genetic algorithm. Without deriving the deterministic equivalent, chance constraints are used within the genetic process and their feasibilities are checked by the stochastic simulation technique. The problem is then reduced to an ordinary chance constrained programming problem. Again using the stochastic simulation-based genetic algorithm, the highest membership value of each of the membership goal is achieved and thereby the most satisfactory solution is obtained. The proposed procedure is illustrated by a numerical example.  相似文献   

9.
Allocating production batches to subcontractors arises frequently in industry. When subcontractors operate different equipment, batch assignment is a complex decision that must take into account both throughput and quality of finished goods. In this paper, a Mixed Integer Linear Goal Programming Model, where productivity uncertainty is taken into account through Fuzzy Set Theory, is developed. Our study was motivated by a real-world application arising in an Italian textile company. Computational results show that this method outperforms the hand-made solutions put to use by the management so far.  相似文献   

10.
In this paper, we propose a model and solution approach for a multi-item inventory problem without shortages. The proposed model is formulated as a fractional multi-objective optimisation problem along with three constraints: budget constraint, space constraint and budgetary constraint on ordering cost of each item. The proposed inventory model becomes a multiple criteria decision-making (MCDM) problem in fuzzy environment. This model is solved by multi-objective fuzzy goal programming (MOFGP) approach. A numerical example is given to illustrate the proposed model.  相似文献   

11.
This paper presents a procedure for solving a multiobjective chance-constrained programming problem. Random variables appearing on both sides of the chance constraint are considered as discrete random variables with a known probability distribution. The literature does not contain any deterministic equivalent for solving this type of problem. Therefore, classical multiobjective programming techniques are not directly applicable. In this paper, we use a stochastic simulation technique to handle randomness in chance constraints. A fuzzy goal programming formulation is developed by using a stochastic simulation-based genetic algorithm. The most satisfactory solution is obtained from the highest membership value of each of the membership goals. Two numerical examples demonstrate the feasibility of the proposed approach.  相似文献   

12.
Logistics customer service is an important factor in the success of supply chain management. The aim of this study is to propose a novel approach for customer service management. For the improvement of logistics service operations, the proposed method integrates quality function development (QFD), fuzzy extended analytic hierarchy process (FEAHP), and multi-segment goal programming (MSGP). The advantage of the method includes the consideration of various logistics goals and the flexibility of setting multi-aspiration levels of evaluation criteria.  相似文献   

13.
In this paper, a novel multi-objective mathematical model is developed to solve a capacitated single-allocation hub location problem with a supply chain overview. Three mathematical models with various objective functions are developed. The objective functions are to minimize: (a) total transportation and installation costs, (b) weighted sum of service times in the hubs to produce and transfer commodities and the tardiness and earliness times of the flows including raw materials and finished goods, and (c) total greenhouse gas emitted by transportation modes and plants located in the hubs. To come closer to reality, some of the parameters of the proposed mathematical model are regarded as uncertain parameters, and a robust approach is used to solve the given problem. Furthermore, two methods, namely fuzzy multi-objective goal programming (FMOGP) and the Torabi and Hassini's (TH) method are used to solve the multi-objective mathematical model. Finally, the concluding part presents the comparison of the obtained results.  相似文献   

14.
In this paper, a multiobjective quadratic programming problem fuzzy random coefficients matrix in the objectives and constraints and the decision vector are fuzzy variables is considered. First, we show that the efficient solutions fuzzy quadratic multiobjective programming problems series-optimal-solutions of relative scalar fuzzy quadratic programming. Some theorems are to find an optimal solution of the relative scalar quadratic multiobjective programming with fuzzy coefficients, having decision vectors as fuzzy variables. An application fuzzy portfolio optimization problem as a convex quadratic programming approach is discussed and an acceptable solution to such problem is given. At the end, numerical examples are illustrated in the support of the obtained results.  相似文献   

15.
This work presents an interactive fuzzy linear programming (FLP) approach for solving project management (PM) decision problems in a fuzzy environment. The proposed approach attempts to minimize total costs with reference to direct, indirect and penalty costs, durations of activities, specified project completion time and total allocated budget. A numerical example demonstrates the feasibility of applying the proposed FLP approach to actual PM decision problems. Accordingly, the proposed approach yields an efficient solution and determines the overall degree of decision maker (DM) satisfaction. Moreover, the proposed approach offers a systematic framework that facilitates the decision-making process, enabling a DM to interactively modify the range of the results when the environment data are vague until a satisfactory solution is obtained. In particular, several significant characteristics of the proposed FLP approach are elucidated in contrast to those of the main PM decision methods.  相似文献   

16.
Due to the global competition in manufacturing environment, firms are forced to consider increasing the quality and responsiveness to customization, while decreasing costs. The evolution of flexible manufacturing systems (FMSs) offers great potential for increasing flexibility and changing the basis of competition by ensuring both cost effective and customized manufacturing at the same time. Some of the important planning problems that need realistic modelling and quicker solution especially in automated manufacturing systems have assumed greater significance in the recent past. The language used by the industrial workers is fuzzy in nature, which results in failure of the models considering deterministic situations. The situation in the real life shop floor demands to adopt fuzzy-based multi-objective goals to express the target set by the management. This paper presents a fuzzy goal programming approach to model the machine tool selection and operation allocation problem of FMS. An ant colony optimization (ACO)-based approach is applied to optimize the model and the results of the computational experiments are reported.  相似文献   

17.
This paper researches portfolio selection problem in combined uncertain environment of randomness and fuzziness. Due to the complexity of the security market, expected values of the security returns may not be predicted accurately. In the paper, expected returns of securities are assumed to be given by fuzzy variables. Security returns are regarded as random fuzzy variables, i.e. random returns with fuzzy expected values. Following Markowitz's idea of quantifying investment return by the expected value of the portfolio and risk by the variance, a new type of mean–variance model is proposed. In addition, a hybrid intelligent algorithm is provided to solve the new model problem. A numeral example is also presented to illustrate the optimization idea and the effectiveness of the proposed algorithm.  相似文献   

18.
Traditional formulations on reliability optimization problems have assumed that the coefficients of models are known as fixed quantities and reliability design problem is treated as deterministic optimization problems. Because that the optimal design of system reliability is resolved in the same stage of overall system design, model coefficients are highly uncertainty and imprecision during design phase and it is usually very difficult to determine the precise values for them. However, these coefficients can be roughly given as the intervals of confidence.

In this paper, we formulated reliability optimization problem as nonlinear goal programming with interval coefficients and develop a genetic algorithm to solve it. The key point is how to evaluate each solution with interval data. We give a new definition on deviation variables which take interval relation into account. Numerical example is given to demonstrate the efficiency of the proposed approach.  相似文献   


19.
Student selection is a multicriteria decision‐making problem that includes both tangible and intangible factors. In these problems if educational institutions have budget or other different constraints, two problems will exist: which students are the best and how students are assigned to the predefined programs? In this study, an integrated approach of fuzzy MULTIMOORA and multichoice conic goal programming is proposed to consider criteria in choosing the best students and define the optimum assignments among the predefined programs to maximize both the total preference value and total ranking value. The rankings of the students are determined by using fuzzy MULTIMOORA. The rankings of candidates are set as the parameters of the first objective function. The placement preferences of the students according to the predefined programs are considered in the second objective function. The candidates are assigned to their placement preferences both by using multichoice conic goal programming among partner universities according to the objectives and by considering the budget and quota.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号