首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new method for aggregating the opinions of experts in a preferential voting system is proposed. The method, which uses fuzzy concept in handling crisp data, is computationally efficient and is able to completely rank the alternatives. Through this method, the number of votes for certain rank position that each alternative receives are first grouped together to form fuzzy numbers. The nearest point to a fuzzy number concept is then used to introduce an artificial ideal alternative. Data envelopment analysis is next used to find the efficiency scores of the alternatives in a pair-wise comparison with the artificial ideal alternative. Alternatives are rank based on these efficiency scores. If the alternatives are not completely ranked, a weight restriction method also based on fuzzy concept is used on the un-discriminated alternatives until they are completely ranked. Two examples are given for illustration of the method.  相似文献   

2.
Making optimal use of available resources has always been of interest to humankind, and different approaches have been used in an attempt to make maximum use of existing resources. Limitations of capital, manpower, energy, etc., have led managers to seek ways for optimally using such resources. In fact, being informed of the performance of the units under the supervision of a manager is the most important task with regard to making sensible decisions for managing them. Data envelopment analysis (DEA) suggests an appropriate method for evaluating the efficiency of homogeneous units with multiple inputs and multiple outputs. DEA models classify decision making units (DMUs) into efficient and inefficient ones. However, in most cases, managers and researchers are interested in ranking the units and selecting the best DMU. Various scientific models have been proposed by researchers for ranking DMUs. Each of these models has some weakness(es), which makes it difficult to select the appropriate ranking model. This paper presents a method for ranking efficient DMUs by the voting analytic hierarchy process (VAHP). The paper reviews some ranking models in DEA and discusses their strengths and weaknesses. Then, we provide the method for ranking efficient DMUs by VAHP. Finally we give an example to illustrate our approach and then the new method is employed to rank efficient units in a real world problem.  相似文献   

3.
In a recent article, Wang et al. [Wang, N. S., Yi, R. H., & Wang, W. (2008). Evaluating the performances of decision-making units based on interval efficiencies. Journal of Computational and Applied Mathematics, 216, 328–343] proposed a pair of interval data envelopment analysis (DEA) models for measuring the overall performances of decision-making units (DMUs) with crisp data. In this paper, we demonstrate that interval DEA models face problems in determining the efficiency interval for each DMU when there are zero values for every input. To remedy this drawback, we propose a pair of improved interval DEA models which make it possible to perform a DEA analysis using the concepts of the best and the worst relative efficiencies. Two numerical examples will be examined using the improved interval DEA models. One of the examples is a real-world application about 42 educational departments in one of the branches of the Islamic Azad University in Iran that shows the advantages and applicability of the improved approach in real-life situations.  相似文献   

4.
In a recent paper by Amin (Amin, Gholam R. (2009). Comment on finding the most efficient DMUs in DEA: An improved integrated model. Computers & Industrial Engineering, 56, 1701–1702), he proposed an improved approach to determine a single efficient DMU as the most (or the best) efficient DMU. It will be shown that this nonlinear mixed integer model may fail to produce a solution since it can be infeasible in some cases. In this paper, a linear mixed integer model is proposed which is feasible and can produce a single efficient DMU as well. The model can also be extended to rank all extreme efficient DMUs. Some properties and advantages of the model will be explained. The contents of the paper will be illustrated by some numerical examples including a real data set of nineteen facility layout alternatives.  相似文献   

5.
This paper develops a decision support tool using an integrated analytic network process (ANP) and fuzzy data envelopment analysis (DEA) approach to effectively deal with the personnel selection problem drawn from an electric and machinery company in Taiwan. The current personnel selection procedure is a separate two-stage method. The administration practice shows that the separation between stages 1 and 2 reduces the administration quality and may incur both the top manager’s displeasure and the decision-makers’ depression. An illustrative example by a simulated application demonstrates the implementation of the proposed approach. This example demonstrates how this approach can avoid the main drawback of the current method, and more importantly, can deal with the personnel selection problem more convincingly and persuasively. This study supports the applications of ANP and fuzzy DEA as decision support tools in personnel selection.  相似文献   

6.
In data mining applications, it is important to develop evaluation methods for selecting quality and profitable rules. This paper utilizes a non-parametric approach, Data Envelopment Analysis (DEA), to estimate and rank the efficiency of association rules with multiple criteria. The interestingness of association rules is conventionally measured based on support and confidence. For specific applications, domain knowledge can be further designed as measures to evaluate the discovered rules. For example, in market basket analysis, the product value and cross-selling profit associated with the association rule can serve as essential measures to rule interestingness. In this paper, these domain measures are also included in the rule ranking procedure for selecting valuable rules for implementation. An example of market basket analysis is applied to illustrate the DEA based methodology for measuring the efficiency of association rules with multiple criteria.  相似文献   

7.
Data envelopment analysis (DEA) uses extreme observations to identify superior performance, making it vulnerable to outliers. This paper develops a unified model to identify both efficient and inefficient outliers in DEA. Finding both types is important since many post analyses, after measuring efficiency, depend on the entire distribution of efficiency estimates. Thus, outliers that are distinguished by poor performance can significantly alter the results. Besides allowing the identification of outliers, the method described is consistent with a relaxed set of DEA axioms. Several examples demonstrate the need for identifying both efficient and inefficient outliers and the effectiveness of the proposed method. Applications of the model reveal that observations with low efficiency estimates are not necessarily outliers. In addition, a strategy to accelerate the computation is proposed that can apply to influential observation detection.  相似文献   

8.
In this article we introduce a comprehensive yet efficient approach based on data envelopment analysis (DEA) with restricted multipliers for accountable and understandable multiple attribute decision making (MADM). Information system (IS) appraisals are motivated and used for illustrating the proposed methodology. Results show that the given DEA based approach can easily and significantly increase the information frame of the decision maker by identifying disparate rankings and by affirming the stability and validity of ranking outcomes. The given validity concept is contrary to the directions given in the main body of research and can also be used to question ranking outcomes of classic MADM methods.  相似文献   

9.
A mixed integer linear model for selecting the best decision making unit (DMU) in data envelopment analysis (DEA) has recently been proposed by Foroughi [Foroughi, A. A. (2011a). A new mixed integer linear model for selecting the best decision making units in data envelopment analysis. Computers and Industrial Engineering, 60(4), 550–554], which involves many unnecessary constraints and requires specifying an assurance region (AR) for input weights and output weights, respectively. Its selection of the best DMU is easy to be affected by outliers and may sometimes be incorrect. To avoid these drawbacks, this paper proposes three alternative mixed integer linear programming (MILP) models for identifying the most efficient DMU under different returns to scales, which contain only essential constraints and decision variables and are much simpler and more succinct than Foroughi’s. The proposed alternative MILP models can make full use of input and output information without the need of specifying any assurance regions for input and output weights to avoid zero weights, can make correct selections without being affected by outliers, and are of significant importance to the decision makers whose concerns are not DMU ranking, but the correct selection of the most efficient DMU. The potential applications of the proposed alternative MILP models and their effectiveness are illustrated with four numerical examples.  相似文献   

10.
11.
Fuzzy data envelopment analysis and its application to location problems   总被引:1,自引:0,他引:1  
In this paper, fuzzy DEA (data envelopment analysis) models are proposed for evaluating the efficiencies of objects with fuzzy input and output data. The obtained efficiencies are also fuzzy numbers that reflect the inherent ambiguity in evaluation problems under uncertainty. An aggregation model for integrating fuzzy attribute values is provided in order to rank objects objectively. Using the proposed method, a case study involving a restaurant location problem is analyzed in detail. Rent of establishment, traffic amount, level of security, consumer consumption level and competition level are identified as the primary factors in determining an ideal location for a Japanese-style rotisserie restaurant. Based on field investigation, the uncertain information on primary factors is represented by fuzzy numbers. Using the fuzzy aggregation model, the best location of restaurant is determined. The case study shows that fuzzy DEA models can be quite useful for solving business problems under uncertainty.  相似文献   

12.
The assessment and selection of high-technology projects is a difficult decision making process at the National Aeronautic and Space Administration (NASA). This difficulty is due to the multiple and often conflicting objectives in addition to the inherent technical complexities and valuation uncertainties involved in the assessment process. As such, a systematic and transparent decision making process is needed to guide the assessment process, shape the decision outcomes and enable confident choices to be made. Various methods have been proposed to assess and select high-technology projects. However, applying these methods has become increasingly difficult in the space industry because there are many emerging risks implying that decisions are subject to significant uncertainty. The source of uncertainty can be vagueness or ambiguity. While vague data are uncertain because they lack detail or precision, ambiguous data are uncertain because they are subject to multiple interpretations. We propose a data envelopment analysis (DEA) model with ambiguity and vagueness. The vagueness of the objective functions is modeled by means of multi-objective fuzzy linear programming. The ambiguity of the input and output data is modeled with fuzzy sets and a new α-cut based method. The proposed models are linear, independent of α-cut variables, and capable of maximizing the satisfaction level of the fuzzy objectives and efficiency scores, simultaneously. Moreover, these models are capable of generating a common set of multipliers for all projects in a single run. A case study involving high-technology project selection at NASA is used to demonstrate the applicability of the proposed models and the efficacy of the procedures and algorithms.  相似文献   

13.
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the input and output data in real-world problems are often imprecise or ambiguous. Some researchers have proposed interval DEA (IDEA) and fuzzy DEA (FDEA) to deal with imprecise and ambiguous data in DEA. Nevertheless, many real-life problems use linguistic data that cannot be used as interval data and a large number of input variables in fuzzy logic could result in a significant number of rules that are needed to specify a dynamic model. In this paper, we propose an adaptation of the standard DEA under conditions of uncertainty. The proposed approach is based on a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set. Our robust DEA (RDEA) model seeks to maximize efficiency (similar to standard DEA) but under the assumption of a worst case efficiency defied by the uncertainty set and it’s supporting constraint. A Monte-Carlo simulation is used to compute the conformity of the rankings in the RDEA model. The contribution of this paper is fourfold: (1) we consider ambiguous, uncertain and imprecise input and output data in DEA; (2) we address the gap in the imprecise DEA literature for problems not suitable or difficult to model with interval or fuzzy representations; (3) we propose a robust optimization model in which the input and output parameters are constrained to be within an uncertainty set with additional constraints based on the worst case solution with respect to the uncertainty set; and (4) we use Monte-Carlo simulation to specify a range of Gamma in which the rankings of the DMUs occur with high probability.  相似文献   

14.
This article first presents several formulas of chance distributions for trapezoidal fuzzy random variables and their functions, then develops a new class of chance model (C-model for short) about data envelopment analysis (DEA) in fuzzy random environments, in which the inputs and outputs are assumed to be characterized by fuzzy random variables with known possibility and probability distributions. Since the objective and constraint functions contain the chance of fuzzy random events, for general fuzzy random inputs and outputs, we suggest an approximation method to compute the chance. When the inputs and outputs are mutually independent trapezoidal fuzzy random variables, we can turn the chance constraints and the chance objective into their equivalent stochastic ones by applying the established formulas for the chance distributions. In the case when the inputs and the outputs are mutually independent trapezoidal fuzzy random vectors, the proposed C-model can be transformed to its equivalent stochastic programming one, in which the objective and the constraint functions include a number of standard normal distribution functions. To solve such an equivalent stochastic programming, we design a hybrid algorithm by integrating Monte Carlo (MC) simulation and genetic algorithm (GA), in which MC simulation is used to calculate standard normal distribution functions, and GA is used to solve the optimization problems. Finally, one numerical example is presented to demonstrate the proposed modeling idea and the efficiency in the proposed model.  相似文献   

15.
This article describes a general-purpose microcomputer code for data envelopment analysis (DEA) that incorporates four different DEA models in the form of a user-friendly, menu-driven structure.Research financially supported by Dean's Professorship, College of Business, the Ohio State University.  相似文献   

16.
In this paper two new target setting DEA approaches are proposed. The first one is an interactive multiobjective method that at each step of the process asks the decision maker (DM) which inputs and outputs he wishes to improve, which ones are allowed to worsen and which ones should stay at their current level. The local relative priorities of these inputs and outputs changes are computed using the analytic hierarchy process (AHP). After obtaining the candidate target, the DM can update his preferences for improving, worsening or maintaining current inputs and outputs levels and obtain a new candidate target. Thus continuing, until a satisfactory operating point is computed. The second method proposed uses a lexicographic multiobjective approach in which the DM specifies a priori a set of priority levels and, using AHP, the relative importance given to the improvements of the inputs and outputs at each priority level. This second approach requires solving a series of models in order, one model for each priority level. The models do not allow for worsening of neither inputs nor outputs. After the lowest priority model has been solved the corresponding target operating point is obtained. The application of the proposed approach to a port logistics problem is presented.  相似文献   

17.
Data envelopment analysis (DEA) is a method for evaluating relative efficiencies of decision-making units (DMUs) which perform similar functions in a production system, consuming multiple inputs to produce multiple outputs. The conventional form of DEA evaluates performances of DMUs only from the optimistic point of view. In other words, it chooses the most favorable weights for each DMU. There is another approach that measures efficiency of a DMU from the pessimistic point of view. This approach chooses the most unfavorable weights for evaluation of each DMU. In this paper, we propose to integrate both efficiencies in the form of an interval in order to measure the overall performance of a DMU. The proposed DEA models for evaluation of efficiencies are called bounded DEA models. The proposed approach will be compared using a numerical example. Another example regarding performance evaluation of 50 bank branches in Iranian cities will be presented to demonstrate the advantages, simplicity, and utility of this approach in real-life situations.  相似文献   

18.
This paper presents a hybrid approach to conducting performance measurements for Internet banking by using data envelopment analysis (DEA) and principal components analysis (PCA). For each bank, DEA is applied to compute an aggregated efficiency score based on outputs, such as web metrics and revenue; and inputs, such as equipment, operation cost and employees. The 45 combinations of DEA efficiencies of the studied banks are calculated, and used as a ranking mechanism. PCA is used to apply relative efficiencies among the banks, and to classify them into different groups in terms of operational orientations, i.e., Internet banking and cost efficiency focused orientations. Identification of operational fitness and business orientation of each firm, in this way, will yield insights into understanding the weaknesses and strengths of banks, which are considering moving into Internet banking.  相似文献   

19.
Data envelopment analysis (DEA) is a widely used technique for measuring the relative efficiencies of decision making units (DMUs) with multiple inputs and multiple outputs. However, in real life applications, undesirable outputs may be present in the production process which needs to be minimized. The present study endeavors to propose a DEA model with undesirable outputs and further to extend it in fuzzy environment in view of the fact that input/output data are not always available in exact form in real life problems. We propose a fuzzy DEA model with undesirable fuzzy outputs which can be solved as crisp linear program for each α in (0, 1] using α-cut approach. Further, cross-efficiency technique is applied to increase the discrimination power of the proposed models and to rank the efficient DMUs at every α in (0, 1]. Moreover, for better understanding of the proposed methodology, we present a numerical illustration followed by an application to the banking sector in India. This is the first study which attempts to measure the performance of public sector banks (PuSBs) in India using fuzzy input/output data for the period 2009–2011. The results obtained from the proposed methodology not only depict the impact of undesirable output on the performance of PuSBs but also analyze efficiently the influence of the presence of uncertainty in the data over the efficiency results. The findings show that the efficiency results of many PuSBs vary with the variation in α during the selected period.  相似文献   

20.
IC Design (fabless) is critical for the global semi-conductor industry. The total revenue of all global fabless firms in 2003 was about US$20 billion, with the top 30 firms earning accounting for 96% of the market share. To examine the leaders in the field, this research analyzes the relative performances of those top 30 fabless firms. Fabless firms are often evaluated based on subjective judgments, and an overall scheme to measure the performance involving objective, multi-input and multi-output criteria is yet to be established. There is also a need for identifying and determining suggestions of how specific firms could improve their performance. Data Envelopment Analysis (DEA) method has been employed in this paper to satisfy the above needs. Using the input and output data of 2003, this study used the DEA method to build a model to evaluate the performance of those global top 30 fabless firms. The current research used four efficiency models: CCR, A&P, BCC, and Cross-Efficiency. To offer a comparison of efficiencies and associated discussions, an analysis of the Scale-Return is provided. Finally, the performance of various fabless firms in 2003 is analyzed. According to the CCR and A&P models, the results showed that the top ten Decision Management Units (DMUs) achieved better operation performance among the 30 leading global fabless firms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号