首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered -titanate materials, NaxMx/2Ti1−x/2O2 (M=Co, Ni and Fe, x=0.2–0.4), were synthesized by flux reactions, and electrical properties of polycrystalline products were measured at 300–800 °C. After sintering at 1250 °C in Ar, all products show n-type thermoelectric behavior. The values of both d.c. conductivity and Seebeck coefficient of polycrystalline Na0.4Ni0.2Ti0.8O2 were ca. 7×103 S/m and ca. −193 μV/K around 700 °C, respectively. The measured thermal conductivity of layered -titanate materials has lower value than conductive oxide materials. It was ca. 1.5 Wm−1 K−1 at 800 °C. The estimated thermoelectric figure-of-merit, Z, of Na0.4Ni0.2Ti0.8O2 and Na0.4Co0.2Ti0.8O2 was about 1.9×10−4 and 1.2×10−4 K−1 around 700 °C, respectively.  相似文献   

2.
Microwave dielectric properties of (Zn1/3Nb2/3)0.40(Ti1−xSnx)0.60O2 ceramics were investigated as a function of SnO2 content (0.15 ≤ x ≤ 0.30). A single phase with tetragonal rutile structure was obtained through the entire composition. The unit-cell volume of the specimens was increased with SnO2 content, due to the larger ionic radius of Sn4+ (0.69 Å) than that of Ti4+ (0.605 Å) for octahedral site. Dielectric constant (K) of the sintered specimens was affected by the dielectric polarizability. Quality factor (Qf) was dependent on the degree of reduction of Ti4+ ion. With an increase of SnO2 content, the temperature coefficient of resonant frequency (TCF) of the specimens decreased due to the decrease of the octahedral distortion of rutile structure.  相似文献   

3.
Effect of substitution of CuO and WO3 on the microwave dielectric properties of BiNbO4 ceramics and the co-firing between ceramics and copper electrode were investigated. The (Bi1−xCux)(Nb1−xWx)O4 (x = 0.005, 0.01, 0.015, 0.02) composition can be densified between 900 and 990 °C. The microwave dielectric constants lie between 36 and 45 and the pores in ceramics were found to be the main influence. The Q values changes between 1400 and 2900 with different x values and sintering temperatures while Qf values lie between 6000 and 16,000 GHz. The microwave dielectric losses, mainly affected by the grain size, pores, and the secondary phase, are discussed. The (Bi1−xCux)(Nb1−xWx)O4 ceramics and copper electrode was co-fired under N2 atmosphere at 850 °C and the EDS analysis showed no reaction between the dielectrics and copper electrodes. This result presented the (Bi1−xCux)(Nb1−xWx)O4 dielectric materials to be good candidates for LTCC applications with copper electrode.  相似文献   

4.
Ultrafine lithium ion conducting La2/3−xLi3xTiO3 (x = 0.11, LLT) powder was synthesized by a simple polymerizable complex method based on the Pechini-type process. The formation mechanism, homogeneity and microstructure of the samples were investigated by thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD analysis indicated the formation of pure perovskite-type phase. The powder synthesized at a temperature as low as 900 °C in a much shorter time than solid-state reaction method was well crystallized. The lithium ion conductivity of the LLT ceramics sintered at 1200 °C was found to be 9 × 10−4 S/cm at room temperature.  相似文献   

5.
Supported Au catalysts Au-Au+-Clx/Fe(OH)y (x < 4, y ≤ 3) and Au-Clx/Fe2O3 prepared with co-precipitation without any washing to remove Cl and without calcining or calcined at 400 °C were studied. It was found that the presence of Cl had little impact on the activity over the unwashed and uncalcined catalysts; however, the activity for CO oxidation would be greatly reduced only after Au-Au+-Clx/Fe(OH)y was further calcined at elevated temperatures, such as 400 °C. XPS investigation showed that Au in catalyst without calcining was composed of Au and Au+, while after calcined at 400 °C it reduced to Au0 completely. It also showed that catalysts precipitated at 70 °C could form more Au+ species than that precipitated at room temperatures. Results of XRD and TEM characterizations indicated that without calcining not only the Au nano-particles but also the supports were highly dispersed, while calcined at 400 °C, the Au nano-particles aggregated and the supports changed to lump sinter. Results of UV–vis observation showed that the Fe(NO3)3 and HAuCl4 hydrolyzed partially to form Fe(OH)3 and [AuClx(OH)4−x] (x = 1–3), respectively, at 70 °C, and such pre-partially hydrolyzed iron and gold species and the possible interaction between them during the hydrolysis may be favorable for the formation of more active precursor and to avoid the formation of Au–Cl bonds. Results of computer simulation showed that the reaction molecular of CO or O2 were more easily adsorbed on Au+ and Au0, but was very difficultly absorbed on Au. It also indicated that when Cl was adsorbed on Au0, the Au atom would mostly take a negative electric charge, which would restrain the adsorption of the reaction molecular severely and restrain the subsequent reactions while when Cl was adsorbed on Au+ there only a little of the Au atom take negative electric charge, which resulting a little impact on the activity.  相似文献   

6.
Nanometer perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) have been prepared using the citric acid complexing-hydrothermal-coupled method and characterized by means of techniques, such as X-ray diffraction (XRD), BET, high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and temperature-programmed reduction (TPR). The catalytic performance of these nanoperovskites in the combustion of ethylacetate (EA) has also been evaluated. The XRD results indicate that all the samples possessed single-phase rhombohedral crystal structures. The surface areas of these nanomaterials ranged from 20 to 33 m2 g−1, the achievement of such high surface areas are due to the uniform morphology with the typical particle size of 40–80 nm (as can be clearly seen in their HRSEM images) that were derived with the citric acid complexing-hydrothermally coupled strategy. The XPS results demonstrate the presence of Mn4+ and Mn3+ in La1−xSrxMnO3−δ and Co3+ and Co2+ in La1−xSrxCoO3−δ, Sr substitution induced the rises in Mn4+ and Co3+ concentrations; adsorbed oxygen species (O, O2, or O22−) were detected on the catalyst surfaces. The O2-TPD profiles indicate that Sr doping increased desorption of the adsorbed oxygen and lattice oxygen species at low temperatures. The H2-TPR results reveal that the nanoperovskite catalysts could be reduced at much lower temperatures (<240 °C) after Sr doping. It is observed that under the conditions of EA concentration = 1000 ppm, EA/oxygen molar ratio = 1/400, and space velocity = 20,000 h−1, the catalytic activity (as reflected by the temperature (T100%) for EA complete conversion) increased in the order of LaCoO2.91 (T100% = 230 °C) ≈ LaMnO3.12 (T100% = 235 °C) < La0.6Sr0.4MnO3.02 (T100% = 190 °C) < La0.6Sr0.4CoO2.78 (T100% = 175 °C); furthermore, there were no formation of partially oxidized by-products over these catalysts. Based on the above results, we conclude that the excellent catalytic performance is associated with the high surface areas, good redox properties (derived from higher Mn4+/Mn3+ and Co3+/Co2+ ratios), and rich lattice defects of the nanostructured La1−xSrxMO3−δ materials.  相似文献   

7.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

8.
A new proton-conductive composite of NH4PO3–(NH4)2Mn(PO3)4 was synthesized and characterized as a potential electrolyte for intermediate temperature fuel cells that operated around 250 °C. Thermal gravimetric analysis and X-ray diffraction investigation showed that (NH4)2Mn(PO3)4 was stable as a supporting matrix for NH4PO3. The composite conductivity, measured using impedance spectroscopy, improved with increasing the molar ratio of NH4PO3 in both dry and wet atmospheres. A conductivity of 7 mS cm−1 was obtained at 250 °C in wet hydrogen. Electromotive forces measured by hydrogen concentration cells showed that the composite was nearly a pure protonic conductor with hydrogen partial pressure in the range of 102–105 Pa. The proton transference number was determined to be 0.95 at 250 °C for 2NH4PO3–(NH4)2Mn(PO3)4 electrolyte. Fuel cells using 2NH4PO3–(NH4)2Mn(PO3)4 as an electrolyte and the Pt–C catalyst as an electrode were fabricated. Maximum power density of 16.8 mW/cm2 was achieved at 250 °C with dry hydrogen and dry oxygen as the fuel and oxidant, respectively. However, the NH4PO3–(NH4)2Mn(PO3)4 electrolyte is not compatible with the Pt–C catalyst, indicating that it is critical to develop new electrode materials for the intermediate temperature fuel cells.  相似文献   

9.
In this work, a ternary coating with the nominal composition Ti/Ru0.3Pb(0.7−x)TixO2 (0≤x≤0.7) deposited on Ti has been prepared through thermal decomposition of ruthenium, titanium and lead inorganic salts dissolved in isopropanol. To find out coatings with reasonable service life for application in electrolysis devices, changes in the firing temperature, heating time and supporting electrolyte have been investigated. Surface morphology and microstructure have been investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). SEM data show that the mud-crack structure is progressively lost with the substitution of titanium by lead oxides. EDS results suggest that lead segregates, forming islands with a high content of Pb. Changes in crystallinity have been obtained with an increase in the lead content. Electrochemical analyses have been carried out in acid medium (HClO4 1.0 mol dm−3 and H2SO4 0.5 mol dm−3). Cyclic voltammetric data and quasi-steady-state polarization curves have been recorded and accelerated life tests have been performed with an anodic current of 400 mA cm−2. High coating stability has been obtained with the electrode fired at 550 °C. Replacing Ti with Pb extends the service life and improves the catalytic activity for oxygen evolution reaction (OER).  相似文献   

10.
The weight and plaque diameter change following trermal treatment, and the density and lattice constant of lithium-rich LixNi1−xO solid solutions obtained by heat treatment at 750°C of Li2CO3---LiyNi1−yO (y < x) mixtures were measured as a function of time. It was found that densification of the solid solutions depends on the method of obtaining the Li2CO3---LiyNi1−yO mixtures. When a large amount of carbonate is put into the starting mixtures Ni---Li2CO3-binder, and the powders are milled together, sintering occurs; in contrast, when the carbonate is added after the formation of LiyNi1−yO solid solution, so that the interstices of the plaque are filled with molten carbonate, the resulting mixtures exhibit no densification. For densification to occur, Li2CO3 must be in intimate contact with the lithium-doped NiO grains.  相似文献   

11.
The sintering properties of La1−xSrxFeO3−δ (x = 0.1, 0.25) mixed conductors have been investigated with particular emphasis on the effect of secondary phases due to cation non-stoichiometry (±5 mol% La excess and deficiency). Secondary phases, located at grain boundaries in cation non-stoichiometric materials, increased the sintering temperature compared to single-phase materials. Extensive swelling in final stage of sintering was observed in all materials, which resulted in micro-porous materials. The swelling was most pronounced in the phase pure and two-phase materials due to La-deficiency, while refractory secondary phases in La-excess materials inhibited both sintering, grain growth and swelling. In La-deficient materials, formation of molten secondary phases resulted in rapid swelling due to viscous flow. The present findings demonstrated the importance of controlling sintering temperature and time, as well as careful control of the cation stoichiometry of La1−xSrxFeO3−δ in order to achieve fully dense and homogenous La1−xSrxFeO3−δ ceramics.  相似文献   

12.
Electrical resistivity and Seebeck (S) measurements were performed on (La1−xSrx)MnO3 (0.02x0.50) and (La1−xSrx)CoO3 (0x0.15) in air up to 1073 K. (La1−xSrx)MnO3 (x0.35) showed a metal-to-semiconductor transition; the transition temperature almost linearly increased from 250 to 390 K with increasing Sr content. The semiconductor phase above the transition temperature showed negative values of S. (La1−xSrx)CoO3 (0x0.10) showed a semiconductor-to-metal transition at 500 K. Dominant carriers were holes for the samples of x0.02 above room temperature. LaCoO3 showed large negative values of S below ca. 400 K, indicative of the electron conduction in the semiconductor phase.  相似文献   

13.
The binary systems ReS2–TaS2 and OsS2-TaS2 are studied. Mixed layer structure (MLS) phases are found in RexTa1−xS2 with a composition range of 0.25x0.5, as well as in the OsxTa1−xS2 with a composition range of 0.26x0.33. The MLSs of both phases are constructed by a random and mixed stacking of the 2Hb-layers and 3R-layers. The magnetic susceptibilities of samples from both phases show a weak Pauli-paramagnetism. The paramagnetic moment and the electrical conductivity of both phases decrease as the composition x increases. The behaviour of the paramagnetic moment and the electrical conductivity of those phases offer us a good example of the number of conduction electrons and their effect.  相似文献   

14.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

15.
The aim of the present work is to obtain ceramic materials with a hexagonal structure and high density, hardness and mechanical strength at lower synthesis temperature. Ceramic samples with nominal composition La1−xCaxAl11−yzMgyTizO18 (x=0–1; y=0–3; z=0–3,5) are prepared. The samples are sintered at temperature 1500 °C by one-stage and two-stage ceramic technology. By X-ray diffraction and scanning electron microscopy, predominant phase LaAl11O18 and second phases LaAlO3 and -Al2O3 are identified. Ceramic materials are characterized with high physico-mechanical properties and may be find application for production of mill bodies and materials for immobilization of nuclear waste.  相似文献   

16.
Li-Li1+x V3O8 cells with solid polymeric electrolyte have been studied by coulometric titration and galvanostatic cycling. Good performance in terms of material utilization and reproductibility was obtained. Impedance measurements show that the diffusion process is rate controlling the overall insertion reaction. Cycling behavior at 0.245 mA cm−2 is characterized by high and stable (after the first few cycles) specific capacity, ie 0.28-0.24 A hg−1 of pure material.  相似文献   

17.
Bi0.5(Na1−xyKxAgy)0.5TiO3 piezoelectric ceramics were prepared by conventional ceramic processes. X-ray diffraction patterns show a pure perovskite structure, indicating that the K+ and Ag+ ions substitute for the Na+ ions in Bi0.5Na0.5TiO3. The temperature dependence of the dielectric constant and dissipation factor shows all ceramics to experience two phase transitions: from ferroelectric to anti-ferroelectric and from anti-ferroelectric to paraelectric. The transition temperature from ferroelectric to anti-ferroelectric and the temperature at which the dielectric constant reaches its maximum value decrease with the increase of K+ amount. At room temperature, the ceramics containing 17.5–20 mol% K+ and 2 mol% Ag+ exhibit high piezoelectric constant (d33 = 180 pC/N) and high electromechanical coupling factor (kp = 35%).  相似文献   

18.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

19.
Mixed oxides with compositions SrTi1−xyZrxMnyO3, with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.2 have been prepared with a conventional coprecipitation method. Some of them are constituted by very pure perovskite-type solid solution phases, with tetravalent Zr and Mn substituting for Ti in the B site. The addition of Zr to SrTiO3 tends to increase the surface areas, while the insertion of Mn tends to decrease it. Mn-containing materials are active in the catalytic combustion of 1% methane in air at temperatures higher than 700 K and can be competitive with pure manganite perovskites like LaMnO3 in spite of the lower Mn content. Pyridine adsorption experiments show that medium strength Lewis acid sites are located at the surface of these materials, and could be involved in the hydrocarbon CH bond activation.  相似文献   

20.
The structure evolution, and microwave dielectric properties of Nd(2−x)/3LixTiO3 ceramics (0 ≤ x ≤ 0.5) were investigated in this paper. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that samples with x = 0.2–0.4 exhibit single phase. Multi-phases of Nd2Ti2O7, Nd2/3TiO3 and Nd2Ti4O11 were observed when x = 0 and 0.1. The concentration and ordering degree of A-site decrease with the increase of x value. The dielectric constant increases up to x = 0.2 and then decreases with the further increase of x value. The Qf value decreases with the increase of x value. The temperature coefficient of resonant frequency exhibits negative value and the absolute value decreases greatly with the decrease of x value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号