共查询到20条相似文献,搜索用时 19 毫秒
1.
一、前言 涡轮分子泵是一种能获得清洁超高真空的真空获得设备。它具有在极宽范围内抽速恒定、对被抽气体无选择性、起动快、操作方便等特点,目前已广泛应用于高能物理,表面物理,等离子体技术,各种分析仪器,电真空器件生产和真空技术各领域。 目前所生产的涡轮分子泵,是必需在有前级泵的条件下工作的真空泵。实验表明,由于级泵抽速的不同和前级泵联接管道的差异,对涡轮分子泵的性能测试结果有较大影响。涡轮分子泵的性能测试规程,规定其前级抽速是涡轮分子泵对不同气体名义抽速的 0.02至0.1倍。据此,如测定110升/秒抽速的涡轮分子泵性能时,… 相似文献
2.
描述了一种涡轮分子泵的结构和性能,这种泵按照现代工艺要求已达到了最佳性能,立 式单向流和直接驱动的高速旋转轴的特点为我们提供了不少方便。结构紧凑、转动平稳、 高抽速和高压缩比,乃是涡轮分子泵的最重要特性。该泵的物理性能达到了最佳化并做了一 些试验。作为最佳性能参数如叶轮,叶片角度以及级数等都是通过计算机计算得到的。根据 一系列泵试验所得到的性能数据,对抽速、压缩比、启动时间、功率消耗等问题作了阐明和 讨论。初步研究一下涡轮分子泵的新结构,再查阅一下Gaede,Siegbahn,Becker,Shapiro及Kruger所发表的有关文献,便… 相似文献
3.
4.
5.
假设扩散泵的性能是以工作液的分子和被抽气体之间的碰撞为根据,通过一些合理假设,按照波耳兹曼方程可以推导出抽气作用方程。抽气作用方程可以变换成二阶偏微分方程,其泵体的形状可作为边界值问题,只有通过扩散油气理论,才能提出真正有实际价值的边值问题。能够用公式表示出来。对其求解有可能确定扩散泵壁形曲线对抽速的影响。 抽速方程式的推导 假设分子间的碰撞作为扩散泵抽气作用的基础,看来似乎是明显的。然而问题是碰撞的影响如何处理。从理论上来说,波耳兹曼方程对该问题是可用的,但是由于两种混合物(被抽气体和工作液蒸汽)和边界条… 相似文献
6.
本文介绍涡轮分子泵的一种新发展起来的高效叶轮。它是以下述两点考虑出发的: 1.试验表明,叶轮在不透光时压缩比和抽速为最佳; 2.为了获得最大压缩比和抽速,必须有相当高的园周速度。 可是,以上两点却往往为叶片的强度性能所限制。 本文所介绍的叶轮,其叶片由于形状合理而转速可以显著地提高。因此,整个半径都是不透光的。迄今为止这种很多人已考虑过的用这种方法可以制得高效叶轮的思考和计算的正确性已通过实验而得到了证实。 相似文献
7.
针对当前分子泵抽速测试装置自动化程度低,压强实验点难以调节等问题,设计出一套分子泵抽速自动测试软件,以LabVIEW为软件开发平台,采用RS485通信实现对真空计、气体质量流量控制计、温度控制仪的数据采集和设备控制;采用PID控制方法调节气体质量流量控制计的通气量,实现对压强实验点的稳定控制;采用继电型PID参数自整定技术提高算法对系统的适应性、该软件提高了分子泵抽速测量工作中数据采集和压强调节的自动化程度,减少了人员操作对测量过程的影响,使测试过程更加科学规范,对分子泵抽速测试技术研究和应用具有一定参考价值。 相似文献
8.
本文分析了涡轮分子泵内动叶片和定片间空隙所产生的影响,讨论了一个基于级间反流传导的简单模型。作者把单级的分析结果结合起来,用来评定多级泵的性能。计算结果表明间隙尺寸对抽速影响很小,而对压缩比的影响却是惊人的,尤其是对于高分子量的气体。最后,本文对不同间隙计算出来的压缩比和抽速与实验结果进行了比较。 相似文献
9.
本文记述了抽速为5-20米^3/秒(对He)的高可靠性涡轮分子泵及其参数,经系列泵根据双流层原理制成,其极限压强大的约为5×10^-8Pa;压缩比为(0.6-2.1)×10^4(对H2)和(0.9~3.2)×10^5(对He)溅余气体的主要成分是氢气,同时,此原采用了动密封以防来自轴承装置的油渗入被抽空腔内。油通过轴承被排出,在泵设计中对其入口法兰不同位置进行了设想(角度为45°)此系列泵对突然性 相似文献
10.
11.
本工作研制了一台采用流量计测量复合分子泵抽速的装置.本装置由测试台车、机柜、计算机自动控制和数据采集处理系统三部分组成.选用3个高精度流量计,满量程分别为1000 sccm、100 sccm和10 sccm,并联组成流量计组件用于测量输入气体的流量,选用高精度的复合真空计测量真空测试罩内气压.抽速测试结果显示,一台1200 L/s的复合分子泵N2抽速重复测量5次,14个气压测试点对应的抽速的最大相对标准偏差小于2%,重复性好.抽速测量的误差主要由流量计和真空计的系统误差决定.采用流量计测量一台分子泵在气压2.00×10-3 Pa~2.00 Pa范围的抽速,测量时间20 min以内. 相似文献
12.
我们同最近发表的一些文献所持的观点不一样。本文论证了对轻气体的压缩比并不取决于涡轮叶片的几何形状。在这些文献中对不同抽速解释为与被抽气体的性质有关,这种解释没有充分的根据。本文以表格的形式列出了压缩比和抽速的数据。 相似文献
13.
一、前言 旋转机械的不平衡是引起振动的常见原因之一。在高速旋转机械中,不平衡则是很严重的问题。挠性转子平衡问题。更是目前解决许多高速机械振动问题的技术关键之涡转分子泵FB—450A转速:24000转/分 FB—110转速:43000转/分一般都过第一临界转速,故为挠性转子。动平衡的目的就是要保证涡轮转子在启动和工作的过程中,使轴承所受的动压力、转子本身的变形都在允许范围之内。FB—450A分子泵原设计要求达 G0.4级。 二、分子泵挠性转子用影响系数法 计算不平衡量及其数据处理 1.转子在不平衡力作用下的变形和振动 一个静态不平衡的转子,… 相似文献
14.
本文介绍了一种抽速达1600升/秒的最新式涡轮分子泵的结构和性能。为了达到所要求的抽速,叶片的几何形状、叶轮的排列方法,以及压缩比的选择,都是根据不含有经验成分的理论,从大量模型泵中计算出来的。这种泵的机械尺寸与十年前相同,而抽速却超过了10倍。新型泵还安装了一种对水蒸汽抽速为1600升/秒的多层液氮致冷板。 1958年N.Becker描述了第一台商品化的轴流涡轮分子真空泵(普发伊费尔公司 TVP500型)。Becker认为,涡轮分子泵的工作原理来源于盖德的分子牵引抽气的理论,所不同之处在于它在工作时在互相牵引面之间采用较大的间隙,而且这… 相似文献
15.
本文利用涡轮分子泵叶片的微分电路模型,导出了涡轮分子泵压缩比与泄漏间隙、叶轮间距之间的简明关系,并提出了压缩比综合修正的方法。计算结果与实测值合得很好,并表明压缩比与叶轮间距之间的关系并不象分子拖动理论预期的那样密切。 相似文献
16.
加速器是用人工方法使带电粒子受电磁场作用而加速到高能量的装置。为保证带电粒子能顺利地加速到预定的能量,就要保证粒子在运动过程中尽可能避免与气体分子碰撞而造成不必要的影响和损失,这就要求粒子必须是在真空中运行,也就是说,真空系统在加速器中是必不可少的。上海先锋电机厂的 J—J2型电子静电加速器的真空系统包括电子枪、加速管、磁透镜、三通管、软连接、阀门、扫描真空盒和抽气机组等。系统的真空度要求达10~(-4)帕量级。满足 相似文献
17.
18.
19.
由于涡轮分子泵在高转速下工作作,其转子的不平衡量引起的振动将会影响分子泵的性能和工作环境,严重时可引起破坏,因此,对分子泵的转子必须经过严格的动平衡。本文介绍了用影响系数法对FB-110型涡轮分子泵进行整机动平衡的步骤,以及测量不平衡响应幅值、相位的方法,并用计算机程序控制平衡过程,程序采用人机对话的方式,简单易懂。实验结果表明。影响系数法平衡涡轮分子泵是切实可行的,而且残余不平衡响应可低于设计指标的要求。分子泵外壳振动通常小于0.05μm。 相似文献
20.
一、前言1913年,盖德提出了一种新型的与位移原理无关的机械真空泵。他的分子牵引泵实际上是这样的设想:气体分子不断地与运动着的固体表面相碰撞,按一定的方向被抽出。基于同样的设想盖德发明了扩散泵,在扩散泵中,气体分子被高速喷射的蒸汽分子带出。他将几级泵串联在一起,当前级压强为1毫巴时,对空气的压缩比达到10~6,抽速为1升/秒。一种改进的盖德分子牵引泵在1923年由霍尔维克(Hol week)提出。转子在具有环形槽的圆柱筒中转动。它所达到的抽速约为5升/秒,对空气的压缩比为10~6的好几倍。 相似文献