首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface morphology of dewaxed jute and of dewaxed and scoured flax and ramie fibres, and the effect of chemically modified morphologies were compared using scanning electron microscopy (SEM). Limited oxidation results in the removal of surface impurities of the bast fibres, producing strands which are clearly distinguishable in the SEM. Treatment of the oxy-fibres with excess phenol (P) and formaldehyde (F) at pH 8 leads to permanentin situ deposition of P-F resin moieties, which makes the strands less clearly visible. Modification of the P-F treated oxy-fibres by vinyl grafting leads to further masking of the fibre strands due to measurable vinyl deposition; in the SEM the fibre strands appear closely cemented together by the grafted-on vinyl polymer. On exposure to a standard microbiological degradative environment, damage to the fibre strands takes place in the order jute flat ramie; oxy-jute oxy-flax oxy-ramie. Each fibre system suffers little microbiological degradation, thereby showing high rot resistance, when the respective oxy-fibres are modified by P-F treatment and also by vinyl grafting in a subsequent step. At this stage the difference between the three fibre systems in rot resistance becomes slight. The SEM observations are supported by analysis of tensile strength (TS) and retention of TS after exposure to a standard microbiological degradative environment.  相似文献   

2.
Raw jute fibre has been incorporated in a polyester resin matrix to form uniaxially reinforced composites containing up to 60 vol% fibre. The tensile strength and Young's modulus, work of fracture determined by Charpy impact and inter-laminar shear strength have been measured as a function of fibre volume fraction. These properties all follow a Rule of Mixtures relationship with the volume fraction of jute. Derived fibre strength and Young's modulus were calculated as 442 MN m–2 and 55.5 GN m–2 respectively. Polyester resin forms an intimate bond with jute fibres up to a volume fraction of 0.6, above which the quantity of resin is insufficient to wet fibres completely. At this volume fraction the Young's modulus of the composite is approximately 35 GN m–2, the tensile strength is 250 MN m–2, the work of fracture is 22 kJ m–2 and the inter-laminar shear strength is 24 MN m–2. The properties of jute and glass fibres are compared, and on a weight and cost basis jute fibres are seen in many respects to be superior to glass fibres as a composite reinforcement.  相似文献   

3.
A biocomposite was originally fabricated with biodegradable polymer PBS and jute fibre, and the effects of fibre surface modification on characteristics of jute fibre and mechanical properties of the biocomposite were evaluated in this paper. The experimental results show that surface modification can remove surface impurities and reduce diameter of jute fibres. Regarding the mechanical properties of biocomposites, it is observed that the biocomposites with jute fibres treated by 2% NaOH, 2 + 5% NaOH or coupling agent, respectively, an optimum in mechanical properties can obtain at fibre content of 20 wt.%, which exhibit an obvious enhancement in mechanical strength and modulus compared to the ones with untreated jute fibre. Furthermore, surface modification also exhibits less effects on flexural properties compared to tensile properties and more on flexural or tensile modulus than on the strength.  相似文献   

4.
Natural fibre-reinforced polymers can exhibit very different mechanical performances and environmental aging resistances depending on their interphase properties, but most studies have been focused on fibre surface treatment. Here, investigations of the effect of maleic anhydride grafted polypropylene (MAHgPP) coupling agents on the properties of jute fibre/polypropylene (PP) composites have been considered with two kinds of matrices (PP1 and PP2). Both mechanical behaviour of random short fibre composites and micro-mechanical properties of single fibre model composites were examined. Taking into account interfacial properties, a modified rule of mixture (ROM) theory is formulated which fits well to the experimental results. The addition of 2 wt% MAHgPP to polypropylene matrices can significantly improve the adhesion strength with jute fibres and in turn the mechanical properties of composites. We found that the intrinsic tensile properties of jute fibre are proportional to the fibre’s cross-sectional area, which is associated with its perfect circle shape, suggesting the jute fibre’s special statistical tensile properties. We also characterised the hydrophilic character of natural fibres and, moreover, humidity environmental aging effects. The theoretical results are found to coincide fairly well with the experimental data and the major reason of composite tensile strength increase in humidity aging conditions can be attributed to both improved polymer–matrix and interfacial adhesion strength.  相似文献   

5.
In present research work, pultrusion process is used to develop jute fibre-reinforced polyester (GFRP) composite and experiments have been performed on an indigenously developed pultrusion experimental setup. The developed composite consists of natural jute fibre as reinforcement and unsaturated polyester resin as matrix with hybrid filler containing bagasse fibre, carbon black and calcium carbonate (CaCO3). The effect of weight content of bagasse fibre, carbon black and calcium carbonate on tensile strength of pultruded GFRP composite is evaluated and the optimum hybrid filler composition for maximizing the tensile strength is determined. Different compositions of hybrid filler are prepared by mixing three fillers using Taguchi L9 orthogonal array. Fifteen percent of hybrid filler of different composition by weight was mixed in the unsaturated polyester resin matrix. Taguchi L 9 orthogonal array (OA) has been used to plan the experiments and ANOVA is used for analysing tensile strength. A regression model has also been proposed to evaluate the tensile strength of the composite within 7% error by varying the above fillers weight. A confirmation experiment was performed which gives 73.14 MPa tensile strength of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.  相似文献   

6.
Carbon nanotubes (CNTs) were grafted on IM7 carbon fibres using a chemical vapour deposition method. The overall grafting process resulted in a threefold increase of the BET surface area compared to the original primary carbon fibres (0.57 m2/g). At the same time, there was a degradation of fibre tensile strength by around 15% (depending on gauge length), due to the dissolution of iron catalyst into the carbon; the modulus was not significantly affected. The wetting behaviour between fibres and poly(methyl methacrylate) (PMMA) was directly quantified using contact angle measurements for drop-on-fibre systems and indicated good wettability. Single fibre fragmentation tests were conducted on hierarchical fibre/PMMA model composites, demonstrating a significant (26%) improvement of the apparent interfacial shear strength (IFSS) over the baseline composites. The result is associated with improved stress transfer between the carbon fibres and surrounding matrix, through the grafted CNT layer. The improved IFSS was found to correlate directly with a reduced contact angle between fibre and matrix.  相似文献   

7.
This paper presents the experimental investigations of the resistance to impact loading of cement mortar slabs (1:3, size: 300 mm × 300 mm × 20 mm) reinforced with four natural fibres, coir, sisal, jute, hibiscus cannebinus and subjected to impact loading using a simple projectile test. Four different fibre contents (0.5%, 1.0%, 1.5% and 2.5%—by weight of cement) and three fibre lengths (20 mm, 30 mm and 40 mm) were considered. The results obtained have shown that the addition of the above natural fibres has increased the impact resistance by 3–18 times than that of the reference (i.e. plain) mortar slab. Of the four fibres, coir fibre reinforced mortar slab specimens have shown the best performance based on the set of chosen indicators, i.e. the impact resistance (Ru), residual impact strength ratio (Irs), impact crack-resistance ratio (Cr) and the condition of fibre at ultimate failure.  相似文献   

8.
《Composites Part A》2002,33(2):233-241
An impact fatigue study has been made for the first time on 35% jute/vinylester composites containing both untreated and alkali treated fibres. Longer alkali treatment removed the hemicellulose and improved the crystallinity and gave better fibre dispersion. The flexural strength properties of the composites made from treated fibre were superior. 4 h alkali treated jute fibres gave the optimum combination of improved interfacial bonding and fibre strength properties. However this was not reflected in their impact fatigue behaviour. On the contrary, the composites reinforced with 8 h alkali treated fibres displayed superior impact fatigue properties. Here, the fibres suffered catastrophic fracture with microfibrillar pull-out at some places and improved the fatigue resistance property of the composites as evident from SEM micrographs.  相似文献   

9.
Carbon fibre reinforced Al-12% Si alloy composite has been fabricated by pre-treating the fibres with K2ZrF6 followed by molten alloy infiltration and subsequent hot pressing of the preforms. The infiltration conditions were arrived at based on the measurement of tensile strength of the fibres extracted from the preforms. The fibre volume per cent of 20 was found to result in composite tensile strength of about 240 MPa as compared to tensile strength of 100 MPa for the unreinforced matrix. Characterization of the interface revealed the formation of ZrSi2 and diffusion of potassium and aluminium into the fibre. The interfacial bonding was strong as is evinced by the absence of fibre pull-out on to the fracture surface.  相似文献   

10.
The present paper summarizes an experimental study on the mechanical and viscoelastic behavior of jute fibre reinforced high density polyethylene (HDPE) composites. Variations in mechanical strength, storage modulus (E′), loss modulus (E″) and damping parameter (tan δ) with the addition of fibres and coupling agents were investigated. It was observed that the tensile, flexural and impact strengths increased with the increase in fibre loading upto 30%, above which there was a significant deterioration in the mechanical strength. Further, the composites treated with MAPE showed improved properties in comparison to the untreated composites. Dynamic mechanical analysis data showed an increase in the storage modulus of the treated composites The tan δ spectra presented a strong influence of fibre content and coupling agent on the α and γ relaxation process of HDPE. The thermal behavior of the composites was evaluated from TGA/DTG thermograms. The fibre–matrix morphology in the treated composites was confirmed by SEM analysis of the tensile fractured specimens. FTIR spectra of the treated and untreated jute fibres was also studied to ascertain the existence of type of interfacial bonds.  相似文献   

11.
Experiments carried out on pultruded fibre reinforced polyester resins show that, at moderate fibre volume fractions, the compressive strength of aligned fibre composites depends linearly on the volume fraction. The strength falls off when the fibre volume fraction,V f=0.4 with Kevlar and high strength carbon fibres. The effective fibre strength atV f<0.4 is much less than the tensile strength but it is close to the tensile strength with E-glass fibres and high modulus carbon fibres. Poor adhesion between fibres and matrix reduces the compressive strength, as does kinking the fibres when the fibre radius of curvature is reduced to below 5 mm. Misalignment of the fibres reduces the compressive strength when the average angle of misalignment exceeds about 10° for glass and carbon fibres. However, with Kevlar no such reduction is observed because the compression strength of Kevlar reinforced resin is only a very little better than that of the unreinforced resin.  相似文献   

12.
《Composites Part A》2000,31(2):143-150
The chemical surface modifications of jute fabrics involving bleaching, dewaxing, alkali treatment, cyanoethylation and vinyl grafting are made in view of their use as reinforcing agents in composites based on a biodegradable polyester amide matrix, BAK 1095. The effect of different fibre surface treatments and fabric amounts on the performance of resulting composites are investigated. The mechanical properties of composites like tensile and bending strengths increase as a result of surface modification. Among all modifications, alkali treatment and cyanoethylation result in improved properties of the composites. The tensile strength of BAK is increased by more than 40% as a result of reinforcement with alkali treated jute fabrics. SEM investigations show that the surface modifications improve the fibre–matrix interaction. From degradation studies we find that after 15 days of compost burial about 6% weight loss is observed for BAK whereas cyanoethylated and alkali treated jute–BAK composites show about 10% weight loss. The loss of weight as well as the decrease of bending strength of degraded composites is more or less directly related.  相似文献   

13.
A number of hybrid composites was made with jute, mercerised jute, and high tenacity man-made cellulose tyre cord yarn Cordenka of dissimilar ratios by a pultrusion process and subsequent injection moulding. Composites of jute, mercerised jute, and Cordenka were also made in order to compare the properties. The matrix material was a polypropylene/ethylene block copolymer (PP), and a maleic acid anhydride grafted PP (MAPP) was used as a coupling agent. The overall fiber contain was 25%. Mechanical properties such as tensile and bending strength, tensile and bending modulus, Charpy impact strength, and heat distortion temperature (HDT) were determined. High strength (>70 MPa) and excellent impact properties (>80 kJ/m2) were achieved with pure Cordenka reinforcement. Partial substitution of jute instead of Cordenka leads to enhance stiffness properties of the composite as well as increased heat distortion temperature (HDT) values above 105 °C for all the tested compositions (25%, 50%, 75%, and 100% jute) and for an overall fiber load of 25%. On the other hand, impact strength decreases with increasing jute fraction down to 22 kJ/m2 for pure jute. A good property balance is achieved for a composite with 25 wt.% jute and 75 wt.% Cordenka, maintaining impact strength of 79 kJ/m2. Mercerisation of the jute fibers gave moderate improvements in the composite properties. Very good fiber (both jute and Cordenka) matrix adhesion was observed by SEM.  相似文献   

14.
This paper investigates the study and preparation of date palm fibre reinforced recycled polymer blend composites. This is the first paper which describes the recycled polymer ternary blends of (1) recycled low density polyethylene (RLDPE), (2) recycled high density polyethylene (RHDPE) and (3) recycled polypropylene (RPP). The date palm fibre reinforced composites (CD00) were prepared by maintaining constant weight% of fibre of 20 wt% without any fibre treatment. Maleic anhydride (MA) was used as the compatabilizer (1 and 2 wt%) and the effect of compatabilizer on the blend matrix composites was studied. The mechanical, thermal, morphological properties, water absorption and chemical resistance properties were evaluated for these composites and also studied for pure blend matrix (C00). Date palm fibre improved the tensile strength and hardness of recycled polymer blend matrix. Further improvement was achieved with 1% MA (CD1), which showed that 1% MA treated composites (CD1) had higher tensile strength, modulus and hardness properties. Thermal stability and water absorption were improved by 1% MA. These improvements were demonstrated at the nanoscale level by the decrease in roughness appearing in Atomic Force Spectroscopic Microscopy analysis indicating that flow is better under this concentration. The SEM analysis also showed that the fibre matrix adhesion improved by adding 1 wt% (CD1) of MA. The melting and crystallisation temperatures of the blends did not change with the addition of date palm fibre and MA, indicating that the additives did not influence the melting and crystallisation properties of the composites. The chemical resistance test results showed that these composites are resistance to all chemicals but more weight gain observed in solvents. 2 wt% of MA (CD2) caused poor adhesion between the polymer chains and fibres as well as polymer chain scission.  相似文献   

15.
The effect of fibre concentration, strain rate and weldline on tensile strength, tensile modulus and fracture toughness of injection-moulded polypropylene copolymer (PPC) reinforced with 10, 20, 30 and 40% by weight short glass fibre was studied. It was found that tensile modulus of single- and double-gated mouldings increased with increasing volume fraction of fibres, ϕf, according to additive rule-of-mixtures, and increased linearly with natural logarithm of strain rate . The presence of weldlines in double-gated mouldings led to reduction in tensile modulus which for composite containing 40% by weight short fibres was as much as 30%. A linear dependence was obtained between fibre efficiency parameter for composite modulus and for both single- and double-gated moulding. Tensile strength of single-gated mouldings, σ c, increased with increasing ϕf in a nonlinear manner. However, for ϕf in the range 0–12% a simple additive rule-of-mixtures adequately described the variation of σ c with ϕf. A linear dependence was obtained between fibre efficiency parameter for tensile strength and The presence of weldlines in double-gated mouldings reduced tensile strength by as much as 70%. Tensile strength of both single- and double-gated mouldings increased linearly with Fracture toughness of single-gated mouldings increased linearly with increasing ϕf. The presence of weldlines in double-gated mouldings reduced fracture toughness by as much as 60% for composite containing 40% by weight short glass fibres.  相似文献   

16.
Abstract

A fine Al203 coating could be obtained from alumina sols modified by chelator acetylacetone, with exact control of parameters. Coating with alumina by the sol–gel method on a carbon fibre surface was investigated in detail to improve the oxidation resistance of carbon fibre. Further study focused on making the alumina coated fibre reinforced aluminium composite prefabrication. X-ray diffraction and SEM methods were used to analyse the alumina gels and the carbon fibre/aluminium (CF/Al) preformed wire. After the coating treatment, oxidation resistance of carbon fibres is enhanced, the wettability between the fibres and melting aluminium is greatly improved, and the tensile strength of CF/Al preformed wire is increased.  相似文献   

17.
This paper deals with the surface modification of Grewia optiva fibre through benzoylation and graft copolymerization process. Benzoylation of Grewia optiva fibre has been carried out on mercerized fibre with varying concentrations of benzoyl chloride solution. Graft copolymerization of acrylonitrile (AN) onto Grewia optiva fibre was carried out with ceric ammonium nitrate as the redox initiator in aqueous medium under the influence of microwave radiation. Raw, graft copolymerized and benzoylated fibres were subjected to evaluation of some of their properties like swelling behaviour, moisture absorbance and chemical resistance behaviour. It has been observed that 5% benzoyl chloride treated and graft copolymerized Grewia optiva show more resistance towards moisture, water and chemicals when compared with that of raw fibre. Further morphological, structural changes, thermal stability and crystallinity of raw, graft copolymerized, pretreated and benzoylated fibres have also been studied by SEM, FTIR, TGA and XRD techniques.  相似文献   

18.
In this paper, two grafted copolymers, Glycidyl Methacrylate grafted polypropylene (PP) (PP-g-GMA) and Maleic Anhydride grafted PP (PP-g-MA) were used in PP reinforced with short poly(ethylene terephthalate) (PET) fibre composites. Transcrystallization (TC) of PP on PET fibres was investigated using a polarized optical microscope, which revealed no TC for either of the modified composites at the fibre–matrix interface. Heat deflection temperature (HDT) results of GMA modified composites revealed more enhancement than HDT of MA modified samples. The composite strength results showed enhancement for both modified composites up to 10 wt.%, and this growth was bigger for GMA modified composites. The morphological analysis of GMA modified PP/PET composites pointed out a marked improvement of fibre dispersion and interfacial adhesion as compared to non-compatibilized PP/PET composites. The results of impact strength showed about 43% enhancement for 15 wt.% PET fibre composites. It was found that at low fibre percentages, using either of the modifiers reduces the impact strength a little in comparison to impact strength of the unmodified samples. According to linear elastic fracture mechanics LEFM, impact fracture toughness (Gc) and critical stress intensity factor (Kc) were evaluated for these composites based on the fracture energy obtained from impact tests.  相似文献   

19.
Development of a fibre coating process based on sol–gel synthesis for depositing ZrO2 interfacial layers on Al2O3 fibres is described. The sol employed exhibited a shear-thinning behaviour and was used to infiltrate Nextel™ 610 fibre tows, forming minicomposites that are used as reinforcements in glass matrix composites (GMCs). The sol–gel method was investigated with respect to the rheological properties of the sol, and the thermal and sintering behaviour of the deposit. The dip-coating method was then optimised and uniformly coated fibres were obtained, which exhibited sufficient retained tensile strength (>50%) to be used as reinforcement in GMCs.  相似文献   

20.
The axial compressive strength of carbon fibres varies with the fibre tensile modulus and precursor material. While the development of tensile modulus and strength in carbon fibres has been the subject of numerous investigations, increasing attention is now being paid to the fibre and the composite compressive strength. In the present investigation, pitch- and PAN-based carbon fibres with wide-ranging moduli and compressive strengths were chosen for a study of fibre structure and morphology. A rayon-based carbon fibre was also included in this study. Structural parameters (L c, La(0), L a(90), orientation parameter Z, and the spacing between graphitic planes d(00, 2)) were determined from wide angle X-ray spectroscopy (WAXS). Fibre morphology was characterized using high-resolution scanning electron microscopy (HRSEM) of fractured fibre cross-sections. The mechanical properties of the fibres, including compressive strength, the structural parameters from WAXS, and the morphology determined from HRSEM are reported. The influence of structure and morphology on the fibre compressive strength is discussed. This study suggests that the width of the graphitic sheets, the crystallite size perpendicular to the fibre axis (L c and L a(0)), and crystal anisotropy play significant roles in accounting for the large differences in compressive strengths of various carbon fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号