首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contemporary anthropogenic silver cycle: a multilevel analysis   总被引:5,自引:0,他引:5  
Anthropogenic cycling of silver in 1997 is presented using three discrete governmental units: 64 countries encompassing what we believe to be over 90% of global silver flows, 9 world regions, and the entire planet. Using material flow analysis (MFA) techniques, the country level cycles are aggregated to produce the regional cycles, which are used to form a "best estimate" global cycle. Interesting findings include the following: (1) several silver-mining countries export ore and concentrate but also import silver-containing semiproducts and products; (2) the level of development for a country, as indicated by the gross domestic product, is a fair indicator of silver use, but several significant outliers exist; (3) the countries with the greatest mine production include Mexico, the United States, Peru, and China, whereas the United States, Japan, India, Germany, and Italy lead in the fabrication and manufacture of products; (4) North America and Europe's use of silver products exceed that of other regions on a per capita basis; (5) global silver discards, including tailings and separation waste, totaled approximately 57% of the silver mined; (6) approximately 57% of the silver entering waste management globally is recycled; and (7) the amount of silver entering landfills globally is comparable to the amount found in tailings. The results of this MFA lay the basis for further analysis, which in turn can offer insight into natural resource policy, the characterization of environmental impact, and better resource management.  相似文献   

2.
Open-pit gold mines encompass thousands of hectares of disturbed materials that are often naturally enriched in mercury (Hg). The objective of this study was to estimate annual non-point-source Hg emissions from two active gold mines in Nevada. This was achieved by measuring diel and seasonally representative Hg fluxes from mesocosms of materials collected from each mine. These measurements provided a framework for scaling emissions over space and time at each mine by identifying the important variables correlated with Hg flux. The validity of these correlations was tested by comparisons with measurements conducted in situ at the mines. Of the average diel fluxes obtained in situ (92 daily flux measurements), 81% were within the 95% prediction limits of the regressions developed from the laboratory-derived data. Some surfaces at the mines could not be simulated in the laboratory setting (e.g., material actively leached by cyanide solution and tailings saturated with cyanide solution), and as such in situ data were applied for scaling. Based on the surface areas of the materials and environmental conditions at the mines during the year of study, non-point-source Hg releases were estimated to be 19 and 109 kg·year(-1). These account for 56% and 14%, respectively, of the overall emissions from each mine (point + nonpoint sources). Material being heap-leached and active tailings impoundments were the major contributors to the releases (>60% combined) suggesting that as mining operations cease, releases will decline.  相似文献   

3.
Prospective environmental life cycle assessment of nanosilver T-shirts   总被引:1,自引:0,他引:1  
A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The "cradle-to-gate" climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO(2)-equiv (FSP) and 7.67-166 kg of CO(2)-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO(2)-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are required.  相似文献   

4.
ABSTRACT: In the past, environmental activities in the food industry used to be focused on meeting the requirements set by authorities on waste and sewage disposal and, more recently, regarding emissions to air. Today environmental issues are considered an essential part of the corporate image in progressive food industries. To avoid sub-optimization, food waste management should involve assessing the environmental impact of the whole food chain. Life cycle assessment (LCA) is an ISO-standardized method to assess the environmental impact of a food product. It evaluates the resources used to perform the different activities through the chain of production from raw material to the user step. It also summarizes the emission/waste to air, water, and land from the same activities throughout the chain. These emissions are then related to the major environmental concerns such as eutrophication, acidification, and ecotoxicity, the factors most relevant for the food sector. The food industry uses the LCAs to identify the steps in the food chain that have the largest impact on the environment in order to target the improvement efforts. It is then used to choose among alternatives in the selection of raw materials, packaging material, and other inputs as well as waste management strategies. A large number of food production chains have been assessed by LCAs over the years. This will be exemplified by a comparison of the environmental impact of ecologically grown raw materials to those conventionally grown. Today LCA is often integrated into process and product development, for example, in a project for reduction of water usage and waste valorization in a diversified dairy.  相似文献   

5.
The appropriateness of the fossil Cumulative Energy Demand (CED) as an indicator for the environmental performance of products and processes is explored with a regression analysis between the environmental life-cycle impacts and fossil CEDs of 1218 products, divided into the product categories "energy production", "material production", "transport", and "waste treatment". Our results show that, for all product groups but waste treatment, the fossil CED correlates well with most impact categories, such as global warming, resource depletion, acidification, eutrophication, tropospheric ozone formation, ozone depletion, and human toxicity (explained variance between 46% and 100%). We conclude that the use of fossil fuels is an important driver of several environmental impacts and thereby indicative for many environmental problems. It maytherefore serve as a screening indicatorfor environmental performance. However, the usefulness of fossil CED as a stand-alone indicator for environmental impact is limited by the large uncertainty in the product-specific fossil CED-based impact scores (larger than a factor of 10 for the majority of the impact categories; 95% confidence interval). A major reason for this high uncertainty is nonfossil energy related emissions and land use, such as landfill leachates, radionuclide emissions, and land use in agriculture and forestry.  相似文献   

6.
The importance of environmental protection has been recently upgraded due to the continuously increasing environmental pollution load. Life Cycle Assessment (LCA), wellknown as ISO 14040, has been repeatedly shown to be a useful and powerful tool for assessing the environmental performance of industrial processes, both in the European and American continents as well as in many Asian countries (such as Japan and China). To the best of our knowledge, almost no information is provided in relation to LCA implementation in Africa apart from an article related to Egypt. Although food industries are not considered to be among the most heavily polluting ones, for some like olive oil, wine, dairy, and meat processing, their impact on the environment is a heavy burden. The introduction of LCA aimed at identifying both inputs and outputs to find out which are the most detrimental to the environment in terms of water/energy consumption and solid/liquid and gas releases. In this review, a thorough coverage of literature was made in an attempt to compare the implementation of LCA to a variety of products of both plant and animal origin. It was concluded that there is a high number of subsystems suggested for the same product, thereby, occasionally leading to confusion. An idea toward solving the problem is to proceed to some sort of standardization by means of several generic case studies of LCA implementation, similarly to what had happened in the case of Hazard Analysis and Critical Control Points (HACCP) implementation in the United States, Canada, Australia, United Kingdom, and other countries.  相似文献   

7.
White clover (WC) offers an alternative source of nitrogen (N) for pasture-based systems. Substituting energy- and carbon-intensive synthetic N fertilizers with N derived from biological fixation by WC has been highlighted as a promising environmental mitigation strategy through the omission of emissions, pollutants, and energy usage during the production and application of synthetic fertilizer. Therefore, the objective was to investigate the effect of the inclusion of WC in perennial ryegrass (PRG) swards on the environmental impact of pasture-based dairy systems. Cradle-to-farm gate life cycle assessment of 3 pasture-based dairy systems were conducted: (1) a PRG–WC sward receiving 150 kg of N/ha per year (CL150), (2) a PRG–WC sward receiving 250 kg of N/ha per year (CL250), and (3) a PRG-only sward receiving 250 kg of N/ha per year (GR250). A dairy environmental model was updated with country-specific N excretion equations and recently developed N2O, NH3, and NO3? emission factors. The environmental impact categories assessed were global warming potential, nonrenewable energy, acidification potential, and eutrophication potential (marine and freshwater). Impact categories were expressed using 2 functional units: per hectare and per metric tonne of fat- and protein-corrected milk. The GR250 system had the lowest milk production and highest global warming potential, nonrenewable energy, and acidification potential per tonne of fat- and protein-corrected milk for all systems. The CL250 system produced the most milk and had the highest environmental impact across all categories when expressed on an area basis. It also had the highest marine eutrophication potential for both functional units. The impact category freshwater eutrophication potential did not differ across the 3 systems. The CL150 system had the lowest environmental impact across all categories and functional units. This life cycle assessment study demonstrates that the substitution of synthetic N fertilizer with atmospheric N fixed by WC has potential to reduce the environmental impact of intensive pasture-based dairy systems in temperate regions, not only through improvement in animal performance but also through the reduction in total emissions and pollutants contributing to the environmental indicators assessed.  相似文献   

8.
This study compared the environmental impact of a range of dairy production systems in terms of their global warming potential (GWP, expressed as carbon dioxide equivalents, CO2-eq.) and associated land use, and explored the efficacy of reducing said impact. Models were developed using the unique data generated from a long-term genetic line × feeding system experiment. Holstein-Friesian cows were selected to represent the UK average for milk fat plus protein production (control line) or were selected for increased milk fat plus protein production (select line). In addition, cows received a low forage diet (50% forage) with no grazing or were on a high forage (75% forage) diet with summer grazing. A Markov chain approach was used to describe the herd structure and help estimate the GWP per year and land required per cow for the 4 alternative systems and the herd average using a partial life cycle assessment. The CO2-eq. emissions were expressed per kilogram of energy-corrected milk (ECM) and per hectare of land use, as well as land required per kilogram of ECM. The effects of a phenotypic and genetic standard deviation unit improvement on herd feed utilization efficiency, ECM yield, calving interval length, and incidence of involuntary culling were assessed. The low forage (nongrazing) feeding system with select cows produced the lowest CO2-eq. emissions of 1.1 kg/kg of ECM and land use of 0.65 m2/kg of ECM but the highest CO2-eq. emissions of 16.1 t/ha of the production systems studied. Within the herd, an improvement of 1 standard deviation in feed utilization efficiency was the only trait of those studied that would significantly reduce the reliance of the farming system on bought-in synthetic fertilizer and concentrate feed, as well as reduce the average CO2-eq. emissions and land use of the herd (both by about 6.5%, of which about 4% would be achievable through selective breeding). Within production systems, reductions in CO2-eq. emissions per kilogram of ECM and CO2-eq. emissions per hectare were also achievable by an improvement in feed utilization. This study allowed development of models that harness the biological trait variation in the animal to improve the environmental impact of the farming system. Genetic selection for efficient feed use for milk production according to feeding system can bring about reductions in system nutrient requirements, CO2-eq. emissions, and land use per unit product.  相似文献   

9.
随着全球应对气候变化进程加速,食品工业作为总产出最高的制造业,其碳排放影响力引起各方关注。本文通过建立一种基于投入产出法的碳排放核算模型,对我国2020年食品工业的碳排放进行了核算和评估。结果显示,我国食品工业碳排放影响力显著,直接碳排放量位居制造业第六,是传统高耗能行业外碳排放量最高的产业;间接碳排放量占比超90%,对电力供应业、石油及煤炭加工业的碳排放拉动量明显高于其他行业,均超过2亿吨;出口贸易中,亚洲国家对我国食品工业的碳排放拉动作用明显。基于食品行业碳排放特点,可通过提高食品制造过程的能源利用率、综合利用二氧化碳、优化贸易结构等方式降低食品工业的直接碳排放量和间接碳排放量。本文对我国食品等传统制造业,科学有效核算碳排放量,识别行业间碳排放拉动影响程度,具有一定的借鉴意义。  相似文献   

10.
Recent spikes in world food and energy prices have fostered renewed momentum for agricultural investment in lower and middle-income countries. Governments in some food-importing countries are promoting the acquisition of land overseas as a means to ensure long-term national food security. Businesses are recognizing new opportunities for strong returns from international investments in agriculture for food, fuel and other agricultural commodities. Dubbed ‘land grabs’ in the media, land-based investments have kindled much international debate, in which strong positions are taken on the impacts of such investments on environment, rights, sovereignty, livelihoods, development and conflict at local, national and international levels. Depending on how they are structured, agricultural investments may deliver local benefits and include small-scale producers in value chains, or carry environmental and social risks that fall disproportionately on local people. Vigorous public debate in recipient countries, effective screening of proposed investments, including robust environmental and social impact assessments, secure local land and resource rights, local voice in decision-making, skillfully negotiated and regulated contracts and effective policy incentives for business models that favor working with local farmers over large plantations can help make the renewed momentum in agricultural investment work for development.  相似文献   

11.
12.
Chromium is an essential engineering metal used in stainless and alloy steels, chemicals, and refractory products. Using material flow analysis, all major anthropogenic chromium flows are characterized for the year 2000, from mining through discard, on three spatial levels: fifty-four countries, nine world regions, and the planet. Included is the first detailed quantification of chromium in internationally traded finished products and diverse waste streams. Findings include (1) 78% of chromium flow entering final use is added as a net addition to stock on the global level; most countries are close to this figure; (2) the majority of mining occurs in Africa (2400 Gg Cr/yr) and the Commonwealth of Independent States (1090 Gg Cr/yr), while the major end-users are Asia, Europe, and North America at 1150, 1140, and 751 Gg Cr/yr, respectively; (3) waste flows of chromium are the greatest in Europe (420 Gg Cr/yr), Asia (370 Gg Cr/yr), and North America (290 Gg Cr/yr), but the composition of these waste flows varies greatly among the world regions; (4) releases of chromium by the global system, which total 2630 Gg Cr/yr, are nearly evenly divided among tailings, ferrochromium slag, downgraded scrap, and post-consumer losses; (5) many countries have a heavy foreign dependence on chromium in the all forms, as is demonstrated for the United States. The findings relating to in-use stock changes and finished product trade are relevant to industry, allowing for more accurate planning for future scrap availability. The quantification of releases due to discards and dissipation hold environmental and human health relevance, while the full life cycle international trade assessment addresses local scarcity.  相似文献   

13.
Life without chemicals would be inconceivable, but the potential risks and impacts to the environment associated with chemical production and chemical products are viewed critically. Eco-efficiency analysis considers the economic and life cycle environmental effects of a product or process, giving these equal weighting. The major elements of the environmental assessment include primary energy use, raw materials utilization, emissions to all media, toxicity, safety risk, and land use. The relevance of each environmental category and also for the economic versus the environmental impacts is evaluated using national emissions and economic data. The eco-efficiency analysis method of BASF is briefly presented, and results from three applications to chemical processes and products are summarized. Through these applications, the eco-efficiency analyses mostly confirm the 12 Principles listed in Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37(5), 94A), with the exception that, in one application, production systems based on bio-based feedstocks were not the most eco-efficient as compared to those based on fossil resources. Over 180 eco-efficiency analyses have been conducted at BASF, and their results have been used to support strategic decision-making, marketing, research and development, and communication with external parties. Eco-efficiency analysis, as one important strategy and success factor in sustainable development, will continue to be a very strong operational tool at BASF.  相似文献   

14.
Previous studies on the life-cycle environmental impacts of corn ethanol and gasoline focused almost exclusively on energy balance and greenhouse gas (GHG) emissions and largely overlooked the influence of regional differences in agricultural practices. This study compares the environmental impact of gasoline and E85 taking into consideration 12 different environmental impacts and regional differences among 19 corn-growing states. Results show that E85 does not outperform gasoline when a wide spectrum of impacts is considered. If the impacts are aggregated using weights developed by the National Institute of Standards and Technology (NIST), overall, E85 generates approximately 6% to 108% (23% on average) greater impact compared with gasoline, depending on where corn is produced, primarily because corn production induces significant eutrophication impacts and requires intensive irrigation. If GHG emissions from the indirect land use changes are considered, the differences increase to between 16% and 118% (33% on average). Our study indicates that replacing gasoline with corn ethanol may only result in shifting the net environmental impacts primarily toward increased eutrophication and greater water scarcity. These results suggest that the environmental criteria used in the Energy Independence and Security Act (EISA) be re-evaluated to include additional categories of environmental impact beyond GHG emissions.  相似文献   

15.
Rapid escalation in biofuels consumption may lead to a trade regime that favors exports of food-based biofuels from tropical developing countries to developed countries. There is growing interest in mitigating the land-use impacts of these potential biofuels exports by converting biorefinery waste streams into cellulosic ethanol, potentially reducing the amount of land needed to meet production goals. This increased land-use efficiency for ethanol production may lower the land-use greenhouse gas emissions of ethanol but would come at the expense of converting the wastes into bioelectricity which may offset fossil fuel-based electricity and could provide a vital source of domestic electricity in developing countries. Here we compare these alternative uses of wastes with respect to environmental and energy security outcomes considering a range of electricity production efficiencies, ethanol yields, land-use scenarios, and energy offset assumptions. For a given amount of waste biomass, we found that using bioelectricity production to offset natural gas achieves 58% greater greenhouse gas reductions than using cellulosic ethanol to offset gasoline but similar emissions when cellulosic ethanol is used to offset the need for more sugar cane ethanol. If bioelectricity offsets low-carbon energy sources such as nuclear power then the liquid fuels pathway is preferred. Exports of cellulosic ethanol may have a small impact on the energy security of importing nations while bioelectricity production may have relatively large impacts on the energy security in developing countries.  相似文献   

16.
随着社会的发展和城镇化进程的加快,我国的产业结构不断优化升级,环境问题也日益显现出来,一些建设用地进行改造或拆除后遗留的土壤环境污染问题日益突出,给居民生活环境都造成了不利的影响。为了安全、有效地开发利用土地,需要对建设用地进行土壤污染状况调查及风险评估工作,协调好人与自然的矛盾,使土地发挥其最高的利用价值,在保护环境的基础上实现可持续发展。  相似文献   

17.
The environmental impact of textile supply chain of selected cotton, wool and polyester apparels consumed in Australia was accessed in this study using life cycle assessment methodology. The environmental impact category, climate change was used for this assessment. Climate change is related to the emissions of greenhouse gases to the atmosphere and the reference unit of climate change impact category is kg CO2 equivalent. The environmental impact of these apparels was then scaled up based on their total consumption in Australia in 2015. The results highlight the differences in environmental impact between the three apparels. This study demonstrates that the main contributor to climate change is the consumer use stage for cotton and polyester apparel whereas wool apparel production process contributes more impact than consumer use stage. Energy use is the main factor of environmental impact. Sensitivity analysis was carried out based on the different parameters used to develop baseline model, such as change of transport from airfreight to sea freight; change of transport distance, change of consumer laundering behaviour. Around 10% CO2 equivalent emission can be reduced from base case by reducing washing machine energy up to 40%. A high efficient washing machine and full load machine wash can save energy and reduce carbon emission.  相似文献   

18.
Heavy metals like mercury that are emitted into the environment remain there indefinitely, posing a long-term threat to both the environment and human health. Elemental mercury is volatile and is in gaseous form, and because of the long residence time, transported over long distances. Comprehensive control of mercury emissions therefore remains an important international issue. The crucial steps for designing effective approaches for such control include the quantification of mercury emissions by sources and the identification of geographical characteristics of the emissions. In this study a detailed, high-resolution inventory of Japanese mercury emissions in 2005 was developed to improve understanding of their geographical distribution. Proceeding from a national emissions inventory per source category, emissions were spatially allocated with increasing geographical resolution in a stepwise procedure using statistics from geographic information resources, yielding mercury emissions per prefecture, per municipality and per grid cell of approximately 1 × 1 km. The five prefectures with the highest emissions were Fukuoka, Yamaguchi, Hyogo, Oita, and Hokkaido, accounting for 35.2% of all emissions. In each prefecture a small number of municipalities account for a major share of emissions. Distribution by grid cell is characterized by a concentration of 50% of all emissions in a mere 32 of the 255?954 grid cells over which emissions are distributed in this study. It was also quantitatively confirmed that use of larger grid cells leads to greater uncertainty in emissions distribution. Problems with data collection are clarified and measures to improve the accuracy of future estimation are proposed.  相似文献   

19.
Ketza River mine tailings deposited underwater and those exposed near the tailings impoundment contain approximately 4 wt % As. Column-leaching tests indicated the potential for high As releases from the tailings. The tailings are composed dominantly of iron oxyhydroxides, quartz, calcite, dolomite, muscovite, ferric arsenates, and calcium-iron arsenates. Arsenopyrite and pyrite are trace constituents. Chemical compositions of iron oxyhydroxide and arsenate minerals are highly variable. The XANES spectra indicate that arsenic occurs as As(V) in tailings, but air-drying prior to analysis may have oxidized lower-valent As. The EXAFS spectra indicate As-Fe distances of 3.35-3.36 A for the exposed tailings and 3.33-3.35 A for the saturated tailings with coordination numbers of 0.96-1.11 and 0.46-0.64, respectively. The As-Ca interatomic distances ranging from 4.15 to 4.18 A and the coordination numbers of 4.12-4.58 confirm the presence of calcium-iron arsenates in the tailings. These results suggest that ferric arsenates and inner-sphere corner sharing or bidentate-binuclear attachment of arsenate tetrahedra onto iron hydroxide octahedra are the dominant form of As in the tailings. EXAFS spectra indicate that the exposed tailings are richer in arsenate minerals whereas the saturated tailings are dominated by the iron oxyhydroxides, which could help explain the greater release of As from the exposed tailings during leaching tests. It is postulated that the dissolution of ferric arsenates during flow-through experiments caused the high As releases from both types of tailings. Arsenic tied to iron oxyhydroxides as adsorbed species are considered stable; however, iron oxyhydroxides having low Fe/As molar ratios may not be as stable. Continued As releases from the tailings are likely due to dissolution of both ferric and calcium-iron arsenates and desorption of As from high-As bearing iron oxyhydroxides during aging.  相似文献   

20.
The implications for greenhouse gas emissions of optimizing a slow pyrolysis-based bioenergy system for biochar and energy production rather than solely for energy production were assessed. Scenarios for feedstock production were examined using a life-cycle approach. We considered both purpose grown bioenergy crops (BEC) and the use of crop wastes (CW) as feedstocks. The BEC scenarios involved a change from growing winter wheat to purpose grown miscanthus, switchgrass, and corn as bioenergy crops. The CW scenarios consider both corn stover and winter wheat straw as feedstocks. Our findings show that the avoided emissions are between 2 and 5 times greater when biochar is applied to agricultural land (2--19 Mg CO2 ha(-1) y(-1)) than used solely for fossil energy offsets. 41--64% of these emission reductions are related to the retention of C in biochar, the rest to offsetting fossil fuel use for energy, fertilizer savings, and avoided soil emissions other than CO2. Despite a reduction in energy output of approximately 30% where the slow pyrolysis technology is optimized to produce biochar for land application, the energy produced per unit energy input at 2--7 MJ/MJ is greater than that of comparable technologies such as ethanol from corn. The C emissions per MWh of electricity production range from 91-360 kg CO2 MWh(-1), before accounting for C offset due to the use of biochar are considerably below the lifecycle emissions associated with fossil fuel use for electricity generation (600-900 kg CO2 MWh(-1)). Low-temperature slow pyrolysis offers an energetically efficient strategy for bioenergy production, and the land application of biochar reduces greenhouse emissions to a greater extent than when the biochar is used to offset fossil fuel emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号