首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
基于基因表达式编程的核k近邻分类算法   总被引:1,自引:1,他引:1  
核k近邻分类算法在生物信息学和蛋白质结构预测等领域中的应用受到人们极大的关注.核函数在核k近邻分类算法的分类性能中起着重要的作用,如果核函数及其参数选择得当,则将获得较高的分类准确率.为了自动产生合适的核函数,提高分类的准确率,提出了一种基于基因表达式编程的核k近邻分类算法GEPKNN.该算法的基本思想是用基因表达式编程搜索与训练数据相关的核函数及其参数,在进化过程中用k折交叉验证评估个体的适应度.该算法克服了核k近邻算法的主观性和不确定性,能自动产生合适的核函数并提高分类的准确率.  相似文献   

2.
为了提高脑思维任务分类精度,提出了一种基于小波包分解和多分类器投票组合的运动想象任务分类方法。该方法利用小波包分解对经过预处理的脑电信号进行分解,提取所有频带上的相对小波包能量特征;根据不同脑思维任务下左右半脑各通道间的差异性对C3、C4两通道求取特定频带上的小波包系数的L-2范数作为特征;采用基于投票策略的组合分类器对两种联合特征进行分类,得到了92.85%的识别精度。实验结果表明,联合特征向量较好地反映了左右手运动想象脑电信号的事件相关去同步(ERD)和事件相关同步(ERS)的本质特性;组合分类器识别效果优于单一分类器。  相似文献   

3.
利用相对小波能量和概率网络的脑-机接口   总被引:1,自引:0,他引:1       下载免费PDF全文
脑-机接口是一种全新的人机接口方式,在人脑与计算机或其他电子设备之间建立的直接的交流和控制通道。特征提取和分类是脑-机接口的关键。脑电信号经过预处理后,利用脑电信号的相对小波能量作为特征,采用主分量分析进行降维,然后利用概率神经网络对两类不同的意识任务(想象小手指运动和舌头运动)进行分类。离线分析结果表明,该方法在分类准确率上有很大的提高,从而为脑-机接口系统的特征提取和分类提供了新思路。  相似文献   

4.
基于能量熵的运动想象脑电信号分类   总被引:3,自引:0,他引:3       下载免费PDF全文
对脑电信号进行特征提取和分类是脑机接口研究的核心问题,利用不同运动想象脑电信号能量熵的变化,从能量熵中提取特征,利用自定义基于统计理论分类方法进行分类,结果均达到90%以上。  相似文献   

5.
提出以信号功率谱熵和频带能量作为组合脑电特征向量,运用时变线性分类算法对左右手运动意识任务分类的方法.C3、C4电极脑电信号8~24Hz功率谱熵和频带能量随时间变化的规律很好地反映了ERD/ERS现象,将两种特征组合用于分类,得到了满意的结果.由于功率谱峰熵和频带能量计算比较简单,稳定性好,识别率高,可在线识别左右手想象运动.  相似文献   

6.
基于小波预处理和贝叶斯分类器的P300识别算法   总被引:1,自引:0,他引:1  
提出了一种高效的诱发电位P300成分识别算法用于脑计算机接口.采用小波分解与重构法去噪,根据P300特征决定小波基函数和分解层教,抽取出最明显的特征成分,结合基于证据框架的贝叶斯回归学习方法,获得对应类别概率进行分类决策.数据来源于2004 BCI Competition Ⅲ中的dataset PⅡ300字符拼写实验...  相似文献   

7.
李晶  张菁  倪军 《计算机科学》2016,43(8):300-303, 308
针对步态识别性能易受视角、着装和携带物品等变化影响的问题,提出了一种基于修正步态能量图和视角检测的步态识别方法。首先,对步态能量图进行修正,降低着装和携带物品的变化对步态识别的影响;接着,基于修正的步态能量图提取熵特征,并依据最近邻准则检测步态序列的视角;最后,在相同视角的数据库下,采用二维主成分分析和二维线性判别分析相结合的方法提取步态特征,并采用最近邻准则进行分类,以降低视角变化对步态识别的影响。通过在CASIA B数据集上进行对比实验,证实所提方法对视角、着装和携带物品等变化的鲁棒性强,平均识别率高。  相似文献   

8.
针对非平稳、非线性、微弱信号难以分析和处理的特点,本文提出了一种基于经验模式分解和学习向量量化神经网络的信号处理和分类方法,并在生物信号处理领域(左、右手运动想象的脑电信号)进行了研究和应用.首先通过经验模式分解算法对脑电信号分解,然后选取主要固有模态函数分量并计算其绝对均值作为特征值,最后使用学习向量量化网络进行分类,并分别与支持向量机和误差反向传播神经网络分类算法进行了对比研究.实验结果表明,所提出的算法分类正确率达到了87%,相比于其余两种对比算法在特定的信号处理领域优越,具有一定的参考和研究价值.  相似文献   

9.
从智能处理与不确定性的角度, 探讨了脑机接口中的核心问题-EEG模式特征的识别和分类. 针对EEG模式分类中所存在的不确定性问题, 从EEG的特征提取和分类模型构建两个方面进行了分析, 并提出了解决问题的方法和对策. 以P300成分为例, 从导联选择、滤波处理和时间窗处理三方面进行特征提取, 采用贝叶斯线性判别分析的方法进行模式分类. 最后以第三届脑机接口竞赛P300字符输入的数据为实验, 分别采用3种不同的方法进行数据分析, 通过分类准确率和不同重复次数下性能的比较, 实验结果表明了本文特征提取和模式分类方法的有效性.  相似文献   

10.
《软件》2017,(12):223-228
脑-机接口通过大脑皮层的EEG活动或者大脑里单个神经元活动使得用户可以来控制设备。这方面最具挑战性的问题之一就是如何提高脑电信号的识别精度。本文采用少通道以及共同空间模式-岭回归分析的模式识别方法,并将其应用到四种运动想象脑电的识别分类。首先对原始数据进行有效的预处理,有漂移矫正,滤波,改进的ICA(Independent Component Analysis)去除伪迹;再利用CSP(Common Space Pattern)和HHT(Hibert-Huang Transform)分别对预处理好的数据进行特征提取;最后再将两种算法提取的特征分别进行SVM(Support vector machine),LDA(Linear Discriminant Analysis)和RR(Ridge Regression)进行分类。实验结果证明,共同空间模式-岭回归分析最后的分类效果是最好的,平均分类识别率约为82.93%,数据中9名被试的最高和最低的分类识别率之间的标准差为1.37%。  相似文献   

11.
工业产品的生产经常需要在不同模态间切换,多模态过程数据具有多中心和方差差异大等特点.针对多模态过程数据的特征,通过构造标准距离,提出了基于标准距离k近邻的故障检测策略(SD–kNN).首先在标准距离度量下计算样本与其前k近邻的距离;其次将近邻距离的平方和的均值作为样本的统计量D~2;最后,根据D~2的分布确定检测方法的控制限,当新样本的D~2大于控制限时,判定其为故障,否则为正常.标准距离使不同模态中样本间的近邻距离能够在同一尺度下度量,使得SD–kNN的D~2能够准确反映样本间的相似程度.进行了数值模拟过程和青霉素发酵过程故障检测实验. SD–kNN方法检测出了数值模拟过程的全部故障和青霉素过程95%以上的故障,相对于PCA, kPCA, FD–kNN等方法具有更高的故障检测率. SD–kNN继承了FD–kNN对一般多模态过程的故障检测能力,还能够对方差差异显著的多模态过程进行故障检测.  相似文献   

12.
刘德高  李晓宇 《计算机应用》2013,33(7):1964-1968
针对增量式监测算法(IMA)的冗余搜索问题,提出一种基于IMA改进的移动对象连续k近邻(Continuous k Nearest Neighbor, CkNN)查询处理新算法。采用增量式查询处理机制;利用距离相近的查询其查询结果大部分相同这一特性,在以查询点为中心进行网络扩展之前,首先执行一个预处理过程,分析相近的其他查询的扩展树,并重用其中的有效部分,从而避免了对道路网的盲目扩展;且在节点的网络扩展中,通过应用具有相同扩展方向的其他查询的扩展结果,不仅减少了对道路网的重复扩展,还节省了计算代价。实验结果表明,所提算法同传统算法相比较, 缩短了查询响应时间,提高了运行效率,并且适用于不同类型的k近邻查询。  相似文献   

13.
One of the most accurate types of prototype selection algorithms, preprocessing techniques that select a subset of instances from the data before applying nearest neighbor classification to it, are evolutionary approaches. These algorithms result in very high accuracy and reduction rates, but unfortunately come at a substantial computational cost. In this paper, we introduce a framework that allows to efficiently use the intermediary results of the prototype selection algorithms to further increase their accuracy performance. Instead of only using the fittest prototype subset generated by the evolutionary algorithm, we use multiple prototype subsets in an ensemble setting. Secondly, in order to classify a test instance, we only use prototype subsets that accurately classify training instances in the neighborhood of that test instance. In an experimental evaluation, we apply our new framework to four state-of-the-art prototype selection algorithms and show that, by using our framework, more accurate results are obtained after less evaluations of the prototype selection method. We also present a case study with a prototype generation algorithm, showing that our framework is easily extended to other preprocessing paradigms as well.  相似文献   

14.
檀何凤  刘政怡 《计算机应用》2015,35(10):2761-2765
针对K近邻多标签(ML-KNN)分类算法中未考虑标签相关性的问题,提出了一种基于标签相关性的K近邻多标签分类(CML-KNN)算法。首先,计算出标签集合中每对标签间的条件概率;其次,对于即将被预测的标签,将其与已经预测的标签间的条件概率进行排序,求出最大值;最后,将最大值跟对应标签值相乘同时结合最大化后验概率(MAP)来构造多标签分类模型,对新标签进行预测。实验结果表明,所提算法在Emotions数据集上的分类性能均优于ML-KNN、AdaboostMH、RAkEL、BPMLL这4种算法;在Yeast、Enron数据集上仅在1~2个评价指标上低于ML-KNN与RAkEL算法。由实验分析可知,该算法取得了较好的分类效果。  相似文献   

15.
针对局部均值伪近邻(LMPNN)算法对k值敏感且忽略了每个属性对分类结果的不同影响等问题,提出了一种参数独立的加权局部均值伪近邻分类(PIW-LMPNN)算法.首先,利用差分进化算法的最新变体——基于成功历史记录的自适应参数差分进化(SHADE)算法对训练集样本进行优化,从而得到最佳k值和一组与类别相关的最佳权重;其次...  相似文献   

16.
一种基于ICA和模糊LDA的特征提取方法   总被引:1,自引:0,他引:1  
独立成分分析(ICA)和线性鉴别分析(LDA)是两种经典的特征提取方法.为了更好地解决人脸识别中的特征提取问题,在已有的两种方法进行特征抽取的基础上引入模糊技术,抽取重叠(离群)样本中有助于分类的特征.首先用ICA进行初次特征提取,然后采用模糊k近邻方法得到相应的样本分布信息,最后在此基础上用模糊LDA进行二次特征提取,得到有效的特征向量集.在3个人脸数据库上的实验结果表明本文方法的有效性.  相似文献   

17.
The linear reconstruction measure (LRM), which determines the nearest neighbors of the query sample in all known training samples by sorting the minimum L2-norm error linear reconstruction coefficients, is introduced in this paper. The intuitive interpretation and mathematical proofs are presented to reveal the efficient working mechanism of LRM. Through analyzing the physical meaning of coefficients and regularization items, we find that LRM provides more useful information and advantages than the conventional similarity measure model which calculates the distance between two entities (i.e. conventional point-to-point, C-PtP). Inspired by the advantages of LRM, the linear reconstruction measure steered nearest neighbor classification framework (LRM-NNCF) is designed with eight classifiers according to different decision rules and models of LRM. Evaluation on several face databases and the experimental results demonstrate that these proposed classifiers can achieve greater performance than the C-PtP based 1-NNs and competitive recognition accuracy and robustness compared with the state-of-the-art classifiers.  相似文献   

18.
为了保证核最近邻凸包分类器有效地处理大训练集的应用问题,提出一种核子空间样本选择方法与该分类器相结合。核子空间样本选择方法是一个类内迭代算法,该算法在核空间里每次迭代选择一个距离选择集样本张成子空间最远的样本。在MIT-CBCL人脸识别数据库的training-synthetic子库上的实验中,该方法不但可以取得100%的识别率,而且与未经选样的核最近邻凸包分类器相比,其执行速度要快许多。  相似文献   

19.
李新春  侯跃 《计算机应用》2017,37(11):3276-3280
针对复杂的室内环境和在传统K最近邻法(KNN)算法中认为信号差相等时物理距离就相等两个问题,提出了一种新的接入点(AP)选择方法和基于缩放权重的KNN室内定位算法。首先,改进AP的选择方法,使用箱形图过滤接收信号强度(RSS)的异常值,初步建立指纹库,剔除指纹库中丢失率高的AP,使用标准偏差分析RSS的变化,选择干扰较小的前n个AP;其次,在传统的KNN算法中引入缩放权重,构建一个基于RSS的缩放权重模型;最后,计算出获得最小有效信号距离的前K个参考点坐标,得到未知位置坐标。定位仿真实验中,仅对AP选择方法进行改进的算法平均定位误差比传统的KNN算法降低了21.9%,引入缩放权重算法的平均定位误差为1.82 m,比传统KNN降低了53.6%。  相似文献   

20.
提出一种基于偏最小二乘回归的鲁棒性特征选择与分类算法(RFSC-PLSR)用于解决特征选择中特征之间的冗余和多重共线性问题。首先,定义一个基于邻域估计的样本类一致性系数;然后,根据不同k近邻(kNN)操作筛选出局部类分布结构稳定的保守样本,用其建立偏最小二乘回归模型,进行鲁棒性特征选择;最后,在全局结构角度上,用类一致性系数和所有样本的优选特征子集建立偏最小二乘分类模型。从UCI数据库中选择了5个不同维度的数据集进行数值实验,实验结果表明,与支持向量机(SVM)、朴素贝叶斯(NB)、BP神经网络(BPNN)和Logistic回归(LR)四种典型的分类器相比,RFSC-PLSR在低维、中维、高维等不同情况下,分类准确率、鲁棒性和计算效率三种性能上均表现出较强的竞争力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号