首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is presented to predict the failure behaviour of wide plates with different crack lengths in a temperature range where brittle, elastic-plastic and fully ductile behaviour is observed. Comparing the characteristic material properties derived from small scale specimens with the corresponding loading conditions in terms of Jappl using two- and three-dimensional finite element analyses, the failure loads can be calculated as a function of temperature. Based on these analyses it is possible to predict the different failure behaviour of the wide plates characterized by the transition temperatures Tgy and Ti.  相似文献   

2.
Life management and structural integrity assessment of bimetallic welds in its state-of-the-art form relies on practical methods derived on the basis of years of experience in operation and simplistic strength of materials analyses. The complex conditions and properties of the weldment, as resulting from the elaborate interaction of different microstructures with gradients in material properties, have limited the ability of currently existing methods to construct the assessment on the basis of actual failure mechanisms of bimetallic welds. Current work addresses the assessment procedure by combining experimental and numerical fracture mechanics comprising a micro-mechanical evaluation of the relevant damage mechanisms. The studied dissimilar ferrite (SA508)–austenite (AISI 304) circumferencial weld is one with a Ni-enriched buttering layer.The experimental work comprises tensile and fracture mechanical characterization of the different microstructural zones of the bimetallic weld. Tensile properties are determined with microstructure specific flat bar specimens as well as round bar specimens enabling better inference of true stress–strain curves. Fracture resistance curves are established by applying small-specimen testing techniques. Different crack configurations are modeled by finite element analysis (FEA) to assess the relationships between fracture types, toughness and local near crack tip constraint parameters. Transferability and characterization question are considered by determining JQ-trajectories and employing small-scale yielding corrections (SSYCs). On the basis of the experimental and numerical results and a fractographical investigation, the micromechanics of fracture are interpreted. Differences in strain hardening capacities of microstructural zones are found to most severely affect the toughness transitions of the weld and the associated failure modes. Two prime failure types are noted, one for cracks located at outer heat affected zone (HAZ) resulting in an unstable crack deflection towards the fusion line (FL) and another type associated with cracks positioned near the fusion line, wherein a low-toughness ductile fracture process results. Small fracture mechanics specimen is found applicable for fracture resistance determination of bimetallic weldments.  相似文献   

3.
The failure behaviour of tension loaded structures is studied with wide plates of steels with different levels of strength and toughness. Procedures for the derivation of toughness requirements are presented. A procedure using fracture mechanics values on the material's side and Finite-Element-calculations on the applied side is introduced and used to quantify toughness requirements.  相似文献   

4.
《Journal of Nuclear Materials》2006,348(1-2):205-212
The influence of a hydrogen concentration gradient at the crack-tip and hydride platelet orientation on the fracture toughness, fracture mode and micromechanisms of a Zircaloy-4 commercial alloy was studied. Fracture toughness was measured on CT specimens and the analysis was performed in terms of J-integral resistance curves at temperatures ranging from 293 to 473 K. Fracture toughness results of specimens containing higher hydrides concentration near the crack-tip region, preferentially orientated in the crack plane, were compared to those obtained from specimens with a homogeneous hydrogen distribution and different platelet orientation; specimens were obtained by charging them in loaded and unloaded condition, respectively. Changes on both macroscopic and microscopic fracture behaviour were observed at temperatures ranging from 293 to 343 K, and the results show the relevance of both hydride concentration and platelet orientation. The existence of a ductile-to-brittle transition is discussed at the light of these new results.  相似文献   

5.
The continuation of the research program “Integrity of Components”, Phase II, mainly deals with further evaluation and assessment of material properties and the application of data from small standard specimens to large scale specimens and components. This includes the use of advanced numerical methods to check the transferability of fracture mechanics parameters with regard to the type of load and degree of multiaxiality on the failure behaviour of fracture mechanics specimens with component-like dimensions. Further points of interest are the relationship between upper shelf toughness and load-bearing capacity, the influence of neutron irradiation on the properties, and the effect of corrosion on cyclic crack growth.  相似文献   

6.
7.
The fracture toughness of steels that are susceptible to dynamic strain aging shows a minimum at temperatures higher than the upper shelf starting temperature. This phenomenon is caused simultaneously by strain aging and plastic deformation. The first aim of the present work is to analyze the effect of dynamic strain aging on the fracture toughness values of three pressure vessel steels in the temperature range between room temperature and 400°C. Fracture mechanics tests were carried out on A533 GB, A516 G70 and 304L steels to obtain the following parameters: JIC, CTODm and the J-R curves. These values were compared against those available in the present references, and good agreement was found. Charpy V notch tests were also carried out on A516 G70 steel at the same test temperatures as for the fracture mechanics tests to analyze the effect of the strain rate. The critical wide stretch zones of the 304L steel specimens were also measured to verify another author's hypothesis about a toughness drop at the upper shelf temperature.  相似文献   

8.
Dynamic fracture behavior of circumferentially cracked pipe is important to evaluate the structural integrity of nuclear piping from the viewpoint of the LBB concept under seismic conditions. Fracture tests have been conducted for Japanese carbon steel (STS410) circumferentially through-wall cracked pipes that are subjected to monotonic or cyclic bending loads at room temperature. In the monotonic-loading tests, the maximum load to failure increases slightly with increasing loading rate. The failure cycles can be expressed simply by ratio of the load amplitude to the plastic collapse load. Fracture analysis has been also conducted to model the pipe tests. A new equation for calculating ΔJ for a circumferentially through-wall cracked pipe subjected to bending has been proposed. The failure cycles under cyclic loads are satisfactorily evaluated using an elastic-plastic fracture mechanics parameter ΔJ.  相似文献   

9.
The correlation between Charpy upper shelf energy and crack resistance was investigated by means of instrumented impact tests (ISO-V specimens) and fracture mechanics tests (CT specimens) using four different steels. The strict definition of the Rice J-integral was not applied to the ISO-V specimens. Defining J as the first derivative of deformation energy, it was possible to obtain crack resistance curves of ISO-V specimens and CT specimens. This correlation has been obtained in steels of yield strength between 365 and 480 N/mm2 and is independent of the material. The mechanical basis of this relation can be understood in terms of the criterion for ductile fracture. 60 to 80% of the upper shelf energy is consumed by stable crack growth according to these experiments. The upper shelf energy is useful as a screening test for crack resistance curves. More definite crack resistance values can be estimated from instrumented impact test carried out in dependence on temperature. It seems to be possible to estimate the required upper shelf energy to be specified in regulations with respect to ductile failure safety on the basis of materials mechanics.  相似文献   

10.
Fracture mechanics analysis is the key element of the integrity evaluation of the nuclear reactor pressure vessel (RPV), such as the pressurized thermal shock (PTS) analysis and PT limit curve construction. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, the simple analytical treatment schemes to calculate the stress and resulting stress intensity factor at the tip of the flaws in the RPV with stainless steel cladding are introduced. For a reference thermal–hydraulic boundary condition, the effects of cladding thermal conductivity and thermal expansion coefficients on the stress intensity factor of surface flaws were examined. Also, the effects of cladding plasticity and thickness were quantitatively examined. The analysis results showed that the existence of the stainless cladding had significant impacts on the RPV failure probabilities.  相似文献   

11.
Four wide plate specimens manufactured in A533B Class I, 90 mm thick by 500 mm wide containing through-thickness or semi-elliptical surface fatigue cracks were tested at +70°C. These specimens were subjected to a series of increasing applied loads, each of 100 h duration, until failure. Testing was performed using a computer interactive 40 MN load controlled tensile testing rig. Values of the fracture toughness parameters J and crack tip opening displacement (CTOD) were derived from the recorded values of applied load, plate extension and crack mouth opening displacement.The influence of loading rate, degree of yield containment and crack orientation on the time dependent behaviour is assessed and compared with data obtained from wide plate and bend tests under monotonic loading and from bend tests conducted with a variable loading rate, with hold periods, under crack mouth opening control. Interpretation of the results provides a clearer understanding of low temperature time dependent ductile crack extension and enables the identification of the conditions under which this phenomenon is apparent, to allow the necessary adjustments to failure assessments.  相似文献   

12.
This contribution deals with the experimental determination of fracture mechanics parameters concerning dynamic crack initiation, crack propagation and crack arrest demonstrated on reactor pressure vessel steels 20 MnMoNi 5 5 and 22 NiMoCr 3 7. Appropriate measuring methods are available to determine the impact fracture toughness KId for CT specimens and CCP specimens. However, for small scale specimens there are still experimental and theoretical problems to be met with when determining the fracture heat of a propagating crack and ascertaining the parameters of arrest.  相似文献   

13.
Fracture behavior of pipes with local wall thinning is very important for the integrity of nuclear power plant. Then we studied the fracture behavior of straight pipe and elbow with local wall thinning. For the straight pipe, failure mode, limit load and allowable wall thinning limit based on plastic deformation ability have been studied systematically. Twenty two straight pipe specimens were tested. The failure mode was divided into four types; cracking, local buckling, ovalization and plastic collapse (ovalization+buckling). Maximum load was successfully evaluated using plastic section modulus and modified flow stress, in dependent to failure mode. For the elbow, plastic collapse and low cycle fatigue fracture by reversed loading have been tested using ten specimens. Observed failure modes were ovalization and local buckling under monotonic loading, and were local buckling and cracking under cyclic loading, especially local buckling promoted crack initiation. Test results were compared with ASME design curve and allowable limit of local wall thinning will be discussed.  相似文献   

14.
针对核电厂控制棒驱动机构(CRDM)上部Ω焊缝堆焊修复(WOR)技术,采用数值模拟方法进行了修复结构完整性评估。根据堆焊修复参数制定二维轴对称高斯热源等效输入,并采用ANSYS程序的单元生死技术模拟焊接过程,得到了结构的焊接残余应力。考虑电厂运行的全部瞬态,计算了结构的瞬态应力,并开展了疲劳分析。结合焊接残余应力分析和瞬态应力分析的结果,开展了断裂力学分析。结果表明,WOR结构的疲劳结果、应力强度因子及裂纹扩展等方面均能满足相应的规范要求。   相似文献   

15.
Abstract

In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic Ku-value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected.  相似文献   

16.
The J-integral is an important parameter for the ductile fracture mechanics assessment of components. With an appropriate modification it may even be applied to inhomogeneous materials where the material characteristics may depend strongly on the location, e.g. in welded joints. Experimental and numerical investigations on fracture mechanics specimens made from a welded joint including the heat affected zone show the influence of the different material parameters on the J-integral. Also, the influence of residual stress on the J-integral and on other fracture mechanics parameters is shown.  相似文献   

17.
In PWR severe accident scenarios, involving a relocation of corium (core melt) into the lower head, the possible failure mode of the reactor pressure vessel (RPV), the failure time, the failure location and the final size of the breach are regarded as key elements, since they play an important part in the ex-vessel phase of the accident.Both the LHF and OLHF experiments as well as the FOREVER experiments revealed that initiation of the failure is typically local. For the case of a uniform temperature distribution in the lower head, crack initiation occurs in the thinnest region and for the case of a non-uniform temperature distribution, it initiates at the highest temperature region. These experimental results can be modelled numerically (but more accurately with 3D finite element codes). The failure time predictions obtained using numerical modelling agree reasonably well with the experimental values.However, the final size of the failure is still an open issue. Analyses of both the LHF and OLHF experimental data (as well as of that from the FOREVER experiments) do not enable an assessment of the final size of the breach (in relation with the testing conditions and results).Indeed, the size of breach depends on the mode of crack propagation which is directly related to the metallurgical characteristics of the RPV steel. Small changes in the initial chemical composition of the vessel material can lead to different types of rupture behaviour at high temperatures. Different rupture behaviours were observed in the LHF and OLHF experiments using the SA533B1 steel. Similar observations were previously noticed during a CEA material characterization programme on the 16MND5 steel. To determine crack propagation and final failure size, 3D modelling would thus be needed with an adequate failure criterion taking into account the variability in behaviour of the RPV material at high temperatures.This paper presents an outline of the methodology being used in a current research programme of IRSN, in partnership with CEA and INSA Lyon. The aim is to model crack opening and crack propagation in French RPV lower head vessels under severe accidents conditions. This programme was initiated in 2003 and is made up of five main sections, namely an inventory of the different French PWR lower head materials, metallurgical investigations to better understand the cause of mechanical behaviour variability that is observed and related to material microstructure, Compact Tension (CT) testing of specimens to characterize the tear resistance of the material, validation of the modelling using experiments on tube specimens and the development of a new failure criterion for the 3D finite element models.  相似文献   

18.
The low-cycle fatigue properties of specimens of recrystallized Zircaloy-2 cladding have been investigated using a bend-testing rig at 20, 250, 300, 350 and 400°C. The results followed the Coffin-Manson law for low-cycle fatigue at all temperatures. Irradiated specimens were tested at 20 and 300°C. At 20°C the life of irradiated specimens was shorter than that of unirradiated specimens, whilst at 300°C the irradiated specimens fall on the same Coffin-Manson plot as the unirradiated specimens. Generally the number of cycles to failure in the present investigation was a factor of three smaller than in other investigations using push-pull testing machines. Fracture surfaces were investigated in a scanning electron microscope in order to determine the characteristic features of low-cycle fatigue failures. Twins found along the path of the fatigue cracks were explained as being a consequence of the cracks rather than as promoters of crack propagation.  相似文献   

19.
Specimens from a Zr-2.5%Nb pressure tube were heat-treated in the range 650 to 1050°C and then creep-tested at 450°C. Water quenching produced anisotropic behaviour for soaking temperatures from 650 to 850°C, and isotropic behaviour above this range. A lower ‘intermediate cooling rate’ produced anisotropic behaviour for the whole soaking range. Creep resistance improved with increasing soaking temperature, particularly for transverse intermediate-cooled specimens. At soaking temperatures of 880°C and higher, a 100-fold reduction in creep rate was achieved with these specimens compared with as-cold-worked. An attempt is made to relate the creep data to crystallographic texture. In the second part of the program, the 880°C intermediate-cool heat treatment was chosen for further testing. It was confirmed that the material exhibits superior creep resistance compared with cold-worked Zr-2.5%Nb, at all stresses from 34 MN/m2 to the ultimate tensile strength, in the temperature range from 300 to 450°C. As expected, the ultimate tensile strength was reduced by this heat treatment. At the upper end of the stress range, at 300°C, a discontinuity occurs in creep data. The instability causing the discontinuity and leading to failure at relatively low stress is attributed to a twinning mechanism. Large twins encompassing hundreds of grains are observed.  相似文献   

20.
Safety and integrity assessments of pressure boundary components require reliable knowledge of the material property values and the validated experimental and computational analysis methods. To improve the accuracy and validity of the experimental and computational fracture assessment methods, a four year Nordic research programme under the auspices of the Nordic Liaison Committee of Atomic Energy was initiated in 1985 and is now under completion. The main technical objective of the programme was to clarify how catastrophic failure can be prevented in pressure vessels and pipings.Experiments with small fracture mechanics specimens and pressure vessels were performed to validate the computational fracture assessment analysis. Two tests were conducted on a decommissioned full-scale chemical reactor pressure vessel from an oil refinery plant, and were extensively instrumented, e.g. by utilizing a 64-channel acoustic emission monitoring system. The scattering of their material property values were determined by numerous fracture mechanics samples. In addition, as a part of the experimental work, the reactor pressure vessel was repaired by welding after the first test. The repair was carried out without postweld heat treatment and welding was done by applying the temper-bead technique. Residual stresses were measured during and after welding.Different fracture assessment methods were developed and subsequently applied to the tested components. Inter-laboratory round robin programmes with the participation of several laboratories were arranged to examine elastic-plastic finite element calculations and fracture mechanics testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号