首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
在Gleeble-1500热模拟机上对7056铝合金进行热压缩实验,变形温度为300~450℃,应变速率为0.01~10 s~(-1),研究其热压缩流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐趋于平稳;应力峰值随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的双曲正弦关系来描述合金热流变行为,其变形激活能为224.3826 kJ/mol.  相似文献   

2.
3104铝合金高温热压缩变形流变行为研究   总被引:5,自引:1,他引:4  
在Gleeble-1500热模拟机上对3104铝合金进行热压缩变形实验,变形温度为300~500℃.变形速率为0.01~20 s-1.结果表明:在低应变速率条件下,流动应力随着应变的增加而增大,达到峰值后趋于平稳,表现出动态回复特征:而在高应变速率条件下,随着应变的增加,流动应力出现锯齿波动,达到峰值后逐渐下降,表现出不连续动态再结晶特征.本构分析表明:可以采用双曲正弦来描述3104铝合金高温热压缩变形流变行为,热变形激活能为215kJ/mol.  相似文献   

3.
2519铝合金热压缩变形流变应力行为   总被引:19,自引:6,他引:13  
在 Gleeble- 15 0 0热模拟机上对 2 5 19铝合金进行等温热压缩实验 ,变形温度为 30 0~ 5 0 0℃ ,应变速率为0 .0 5~ 2 5 s- 1 ,研究其热压缩变形的流变应力行为。结果表明 :2 5 19铝合金真应力 -应变曲线在低应变速率 (ε<2 5 s- 1 )条件下 ,流变应力开始随应变增加而增大 ,达到峰值后趋于平稳 ,表现出动态回复特征 ;而在高应变速率 (ε≥ 2 5 s- 1 )条件下 ,应力出现锯齿波动达到峰值后逐渐下降 ,表现出不连续再结晶特征。在用 Arrhenius方程描述 2 5 19铝合金热变形行为时 ,其变形激活能 Q为 16 7.81k J/ mol  相似文献   

4.
403Nb钢高温热压缩变形条件下的流变应力研究   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟实验机进行了403Nb钢的高温热压缩实验,并对其流变应力进行了研究。实验结果表明,温度在1100℃~1150℃,应变速率在0.01s-1~0.1s-1时,403Nb钢在热压缩实验中发生了明显的动态再结晶;用Zener-Hollomon参数的双曲对数函数能较好的描述403Nb钢的流变行为;经回归得到了403Nb钢峰值应力σP的表达式和热变形激活能Q值。  相似文献   

5.
2219铝合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
欧玲  孙斌  王智 《热加工工艺》2008,37(2):42-45
通过Gleeble-1500热模拟机对2219铝合金在应变速率为0.1~10s-1、变形温度为320~440℃的流变应力行为进行了研究.结果表明:在实验条件范围内,2219铝合金热压缩变形时,流变应力随变形温度的升高而降低,随变形速率提高而增大;可采用Zener-Hollomon参数的的双曲正弦函数来描述2219铝合金高温变形的峰值流变应力行为;获得的峰值流变应力解析式中,A、α和,n值分别为2.65×10 10s-1、0.020 MPa-1和6.91,热变形激活能Q为153.3kJ/mol.  相似文献   

6.
5083铝合金热压缩变形流变应力行为   总被引:4,自引:2,他引:4  
在Gleeble-1500热模拟机上,当变形温度为300-500℃、应变速率为0.01-10 s^-1、真应变为0-0.8时,采用圆柱体等温热压缩实验研究5083铝合金变形流变应力行为。通过分析流变应力指数函数中系数A、β与应变的关系,建立Zener-Hollomon参数的指数关系本构方程。运用该本构方程对5083铝合金不同应变速率、变形温度及应变条件下的流变应力进行预测,发现流变应力预测值与温升修正值吻合得相当好。  相似文献   

7.
在Gleeble-1500热模机上对2026铝合金进行了热压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10 S-1条件下热压缩变形流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐减小并趋于平稳,表现出流变软化特征;应力峰值随温度的升高而减小,随应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述2026铝合金热变形行为,其变形激活能为256.02KJ/mol.合金热压缩变形的主要软化机制由动态回复转化为连续动态再结晶.  相似文献   

8.
Al-Zn-Mg-Cu-Zr铝合金的高温热压缩变形行为(英文)   总被引:1,自引:0,他引:1  
在温度为300-450°C和应变速率为0.01-10s-1的变形条件下,对Al-Zn-Mg-Cu-Zr合金(7056和7150铝合金)进行热压缩实验。结果表明:在一定的应变峰值出现后,流动应力随应变增加单调下降,呈现出流动软化。峰值应力取决于温度补偿应变速率Z的大小,可用包含Zener-Hollomon参数的双曲正弦关系来描述合金热流变行为。7056合金的变形激活能为244.64kJ/mol,而7150合金的为229.75kJ/mol;在同样的变形条件下,前者的峰值应力却低于后者。在高Z值条件下,在延长晶粒的亚晶粒中存在大量析出物;而在低Z值条件下,再结晶化的晶粒内出现完整的亚晶。7150合金中存在细小亚晶和大量析出物,由于亚结构强化和析出硬化造成其峰值应力比7056合金高。  相似文献   

9.
在Gleeble-3500热模拟机上对半固态7050铝合金进行了高温热压缩试验,研究了该合金在变形温度为420~465℃、应变速率为0.001~0.100s-1条件下的流变应力行为以及变形过程中的显微组织。结果表明,流变应力在变形初期随着应变的增大迅速增大,出现峰值应力后逐渐平稳,流变应力随着应变速率的增大而增大,随着变形温度的升高而下降;流变应力可以用双曲线正弦形式的关系来描述,通过线性拟合计算出该材料的形变激活能等参数,获得流变应力的本构方程。随着变形温度升高和应变速率降低,合金中拉长的晶粒变大,合金热压缩变形的主要软化机制为动态再结晶。  相似文献   

10.
AZ80镁合金高温热变形流变应力研究   总被引:1,自引:1,他引:1  
在Gleeble2000热模拟机上对铸态AZ80镁合金在应变速率为0.001~1s-1、变形温度为240~440℃条件下的热压缩变形行为进行了研究.结果表明:AZ80镁合金热压缩变形的流变应力受到变形温度和应变速率的显著影响,可以用Zener-Hollomon参数的双曲正弦函数形式进行描述.本实验条件下,AZ80镁合金热压缩变形时的应力指数n为5,其热变形激活能Q为183 kJ·mol-1,建立了流变应力的数学模型,其结果可为变形镁合金的塑性成形工艺的制订提供更为科学的依据.  相似文献   

11.
采用圆柱体在Gleeble-1500热模拟机上进行热压缩实验,对一种新型水平连铸Al-Mn-Si-X合金热变形流变应力行为进行研究,变形温度为350℃~500℃,应变速率为0.01s-1~10s-1。结果表明,流变应力先随应变的增大而增大,达到峰值后则逐渐减小并趋于平稳,表现出流变软化特征;而应力峰值是随着温度的升高而减小,随应变速率的增大而增大。应用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金热压缩变形流变应力,其变形激活能Q=159.2kJ/mol。  相似文献   

12.
AZ80镁合金热变形流变应力研究   总被引:1,自引:1,他引:0  
在应变速率为0.001s-1~10s-1,变形温度为200℃~400℃条件下,在Gleeble-3800热模拟机上对AZ80合金的流变应力进行了研究。结果表明,AZ80合金的流变应力强烈地受变形温度的影响,当变形温度低于300℃时,其峰值流变应力呈现幂指数关系;当变形温度高于300℃时,其峰值流变应力呈现指数关系。在该文实验条件下,AZ80合金热变形应力指数n=8.43,热变形激活能Q=165.83kJ/mol。  相似文献   

13.
7075铝合金热压缩变形流变应力   总被引:42,自引:10,他引:42  
在Gleeble-1500热模拟试验机上,采用高温等温压缩试验,对7075铝合金在高温压缩变形中的流变应力行为进行了研究。结果表明,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;可用Zener-Hollomon参数的指数形式来描述7075铝合金高温压缩变莆时的流变应力行为。  相似文献   

14.
抗蠕变Zn-Cu-Cr合金的热压缩流变应力行为   总被引:1,自引:0,他引:1  
通过Gleeble1500D热模拟机的热压缩实验,研究了Zn-8Cu-0.2Cr合金在应变速率为0.01/s~10/s、温度为230℃~380℃条件下的流变应力行为;采用双曲正弦模型求解材料常数,并采用非线性回归,建立了真应变ε与Q、lnA、n和α之间的关系。结果表明,变形条件对流变应力具有显著的影响,流变应力随应变速率的增大和温度的升高而减小;Q、lnA、n和α可表示为真应变ε的5次指数函数,利用该函数,可以计算任意变形条件下的流变应力,其平均误差为5.9%,该模型能准确反映Zn-8Cu-0.2Cr合金的高温变形力学行为。  相似文献   

15.
Al-6.2Zn-2.3Mg-2.3Cu合金热压缩变形的流变应力与组织演变   总被引:1,自引:0,他引:1  
利用GPL-1500热模拟试验机对Al-6.2Zn-2.3Mg-2.3Cu合金在不同温度和不同应变速率条件下进行高温压缩试验,得到压缩真应力-应变曲线,并得出该合金的变形激活能和流变应力-应变方程。结果表明,变形温度和应变速率的变化对流变应力的影响明显,流变应力随变形温度的提高而显著降低,随应变速率的提高而增加。该合金高温变形过程的流变应力可用Zener-Hollomon参数(Z)描述;用双曲正弦函数修正的Arrhenius关系表示的流变应力方程为.ε·=1.282×100[sin(0.010σ)]4.9145exp(-134157/RT)。  相似文献   

16.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si-Cr合金在变形温度为600~800℃、应变速率为0.01~5 s-1条件下的动态再结晶行为以及组织转变进行了研究,分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化.结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大,材料显微组织强烈受到变形温度的影响.  相似文献   

17.
The flow stress behavior of 2197 Al-Li alloy during hot compression deformation was studied in the strain rate range from 0.01 to 10 s^-1 and the temperature range from 360 to 510℃ by isothermal compression test on a Gleeble-1500 thermal-mechanical simulator. The results show that the flow stress of 2197 Al-Li alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The peak flow stress during high temperature deformation can be represented by Z parameter in a hyperbolic sine function. The analytical expression of peak flow stress was fitted with the hot deformation activation energy of 260.6 kJ/mol.  相似文献   

18.
Al-Mn-Mg-Cu-Ni合金热压缩变形的流变行为和组织   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Al-Mn-Mg-Cu-Ni合金进行热压缩试验,分析合金的流变应力与应变速率和变形温度之间的关系,计算高温变形时的变形激活能,并研究合金在变形过程中的显微组织。结果表明:Al-Mn-Mg-Cu-Ni合金在本实验条件下具有正的应变速率敏感性;流变应力随应变速率的增大而增大,随变形温度的升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为209.84kJ/mol。随着热变形温度的升高和应变速率的减小,合金中的主要软化机制逐步由动态回复转变为动态再结晶。  相似文献   

19.
01570铝合金热压缩变形的流变应力本构方程   总被引:2,自引:1,他引:2  
在Gleeble-1500热模拟机上对01570铝合金进行等温热压缩实验,变形温度为300~450℃,应变速率为0.001~1 s-1,研究其热压缩变形的流变应力行为.结果表明:01570铝合金真应力-应变曲线在变形温度为300 ℃,应变速率为0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.在用Arrhenius方程描述01570铝合金热变形行为时,其变形激活能Q为152.33 kJ·mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号