首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied PTEN/MMAC1, a newly discovered candidate tumor suppressor gene at 10q23.3, for mutations in lung cancer. One hundred and thirty-six lung cancer cell line DNAs (66 small cell lung cancers, SCLC, 61 non-small cell lung cancers, NSCLC, four mesotheliomas, five extrapulmonary small cell cancers) were analysed for PTEN/MMAC1 homozygous deletions and five (8%) SCLC lines showed homozygous deletions interrupting the PTEN/MMAC1 gene. Using single stranded conformation polymorphism (SSCP) analysis, we screened the PTEN/MMAC1 open reading frame of 53 lung cancer cell line cDNAs for point mutations and found that 3/35 SCLCs and 3/18 NSCLCs contained homozygous amino acid sequence altering mutations. Northern blot analysis revealed that expression of the PTEN/MMAC1 gene was considerably lower in all the tumor cell lines with point mutations while no expression was detected for cell lines with PTEN/MMAC1 homozygous deletions. Mutation analysis of 22 uncultured, microdissected, primary SCLC tumors and metastases showed two silent mutations, and two apparent homozygous deletions. We also discovered a processed pseudogene (PTEN2) which has 98.5% nt identity to PTEN/MMAC1, that needs to be accounted for in cDNA mutation analysis. Our findings suggest that genetic abnormalities of the PTEN/MMAC1 gene are only involved in a relatively small subset of lung cancers.  相似文献   

2.
Loss of heterozygosity (LOH) of chromosome 10q is observed in approximately 40% of endometrial cancers. Mutations in PTEN/MMAC1, a gene recently isolated from the 10q23 region, are responsible for two dominantly inherited neoplastic syndromes, Cowden disease and Bannayan-Zonana syndrome. Somatic mutations of this gene have also been detected in sporadic cancers of the brain, prostate and breast. To investigate the potential role of this putative tumor suppressor gene in endometrial carcinogenesis as well, we examined 46 primary endometrial cancers for LOH at the 10q23 region, and for mutations in the entire coding region and exon-intron boundaries of the PTEN/MMAC1 gene. LOH was identified in half of the 38 informative cases, and subtle somatic mutations were detected in 15 tumors (33%). Our results suggest that of the genes studied so far in endometrial carcinomas, PTEN/MMAC1 is the most commonly mutated one, and that inactivation of both copies by allelic loss and/or mutation, a pattern that defines genes as "tumor suppressors," contributes to tumorigenesis in endometrial cancers.  相似文献   

3.
Mutations of the human putative protein tyrosine phosphatase (PTEN/MMAC1) gene at chromosome 10q23 have been found frequently in type I endometrial carcinomas. Endometrioid adenocarcinoma is the most frequent histology seen in patients with clinically determined synchronous endometrial and ovarian carcinomas. We report a high incidence of PTEN/MMAC1 mutations and 10q23 loss of heterozygosity (LOH) in patients with synchronous endometrial and ovarian carcinomas. Paraffin-embedded precision microdissected tumors were analyzed for 10 matched synchronous endometrial and ovarian cancers and 11 matched control metastatic endometrial cancers. Single-stranded conformation polymorphism analysis was used to screen for mutations in all tumors and corresponding normal lymphocyte DNA. LOH was determined using a panel of four microsatellite markers within the PTEN/MMAC1 locus. PTEN/MMAC1 mutations were found in 43% (9 of 21) of the endometrial cancers studied, similarly represented in the clinically synchronous group (5 of 10 or 50%) and the advanced metastatic group (4 of 11; 36%; P = 0.53). In two of the five cases of clinically synchronous cancers, identical or progressive PTEN mutations were found in both the endometrial and ovarian cancers, suggesting that the ovarian tumor is a metastasis from the endometrial primary. PTEN/MMAC1 mutations in the advanced endometrial cancers were similar in the corresponding metastases. In one case, the mutation was seen in only one of two metastatic lymph nodes. The LOH analysis demonstrated 55% LOH in at least one PTEN/MMAC1 marker. These findings suggest that the putative tumor suppressor gene PTEN/MMAC1 may be a viable molecular marker to differentiate synchronous versus metastatic disease in a subset of clinically synchronous endometrial and ovarian carcinomas.  相似文献   

4.
A novel tumor suppressor gene, PTEN/MMAC1, has been recently shown to be mutated in gliomas, breast, prostate, kidney cancers and melanomas. Loss-of-heterozygosity studies in melanoma have suggested the presence of at least one chromosome 10q locus lost early in tumor progression. In this study, we screened 45 melanoma cell lines and 17 paired uncultured metastatic melanoma and peripheral blood specimens for PTEN/ MMAC1 alterations using PCR-SSCP and direct sequencing. We found nine melanoma cell lines with homozygous deletions (five with intragenic loss) and four cell lines with mutations (one nonsense and one frameshift; two intronic); from among our uncultured melanoma specimens, we found one tumor with a somatic 17 bp duplication in exon 7 leading to a premature stop codon and one tumor with a possible homozygous deletion. Furthermore, we have identified a novel intragenic polymorphism within intron 4 of PTEN/MMAC1. Taken together, these data suggest that PTEN/MMAC1 may be a chromosome 10q tumor suppressor important in melanoma tumor formation or progression.  相似文献   

5.
Loss of heterozygosity (LOH) on chromosome 10 is the most frequent genetic alteration associated with the evolution of malignant astrocytic tumors and it may involve several loci. The tumor suppressor gene PTEN (MMAC1) on chromosome 10q23 is mutated in approximately 30% of glioblastomas (WHO Grade IV). In this study, we assessed the frequency of PTEN mutations in primary glioblastomas, which developed clinically de novo, and in secondary glioblastomas, which evolved from low-grade (WHO Grade II) or anaplastic astrocytomas (WHO Grade III). Nine of 28 (32%) primary glioblastomas contained a PTEN mutation and an additional case showed a homozygous PTEN deletion. This indicates that after overexpression/amplification of the EGF receptor, loss of PTEN function is the most common alteration in primary glioblastomas. In this series, 5 of 28 (18%) primary glioblastomas showed both a PTEN mutation and EGFR amplification. In contrast, only 1 of 25 (4%) secondary glioblastomas contained a PTEN mutation, and none of them showed a homozygous PTEN deletion. The secondary glioblastoma with a PTEN mutation developed from an anaplastic astrocytoma that already carried the mutation. The observation that secondary glioblastomas have a p53 mutation as a genetic hallmark but rarely contain a PTEN mutation supports the concept that primary and secondary glioblastomas develop differently on a genetic level.  相似文献   

6.
Endometrial carcinomas represent the most common gynecological cancer in the United States, yet the molecular genetic events that underlie the development of these tumors remain obscure. Chromosome 10 is implicated in the pathogenesis of endometrial carcinoma based on loss of heterozygosity (LOH), comparative genomic hybridization, and cytogenetics. Recently, a potential tumor suppressor gene, PTEN/MMAC1, with homology to dual-specificity phosphatases and to the cytoskeletal proteins tensin and auxillin was identified on chromosome 10. This gene is mutated in several types of advanced tumors that display frequent LOH on chromosome 10, most notably glioblastomas. Additionally, germ-line mutations of PTEN/MMAC1 are responsible for several familial neoplastic disorders, including Cowden disease and Bannayan-Zonana syndrome. Because this locus is included in the region of LOH in many endometrial carcinomas, we examined 70 endometrial carcinomas for alterations in PTEN/MMAC1. Somatic mutations were detected in 24 cases (34%) including 21 cases that resulted in premature truncation of the protein, 2 tumors with missense alterations in the conserved phosphatase domain, and 1 tumor with a large insertion. These data indicate that PTEN/MMAC1 is more commonly mutated than any other known gene in endometrial cancers.  相似文献   

7.
Loss of chromosome 10q is a frequently observed genetic defect in prostate cancer. Recently, the PTEN/MMAC1 tumor suppressor gene was identified and mapped to chromosome 10q23.3. We studied PTEN structure and expression in 4 in vitro cell lines and 11 in vivo xenografts derived from six primary and nine metastatic human prostate cancers. DNA samples were allelotyped for eight polymorphic markers within and surrounding the PTEN gene. Additionally, the nine PTEN exons were tested for deletions. In five samples (PC3, PC133, PCEW, PC295, and PC324), homozygous deletions of the PTEN gene or parts of the gene were detected. PC295 contained a small homozygous deletion encompassing PTEN exon 5. In two DNAs (PC82 and PC346), nonsense mutations were found, and in two (LNCaP and PC374), frame-shift mutations were found. Missense mutations were not detected. PTEN mRNA expression was clearly observed in all cell lines and xenografts without large homozygous deletions, showing that PTEN down-regulation is not an important mechanism of PTEN inactivation. The high frequency (60%) of PTEN mutations and deletions indicates a significant role of this tumor suppressor gene in the pathogenesis of prostate cancer.  相似文献   

8.
The MMAC1/PTEN gene, located at 10q23.3, is a candidate tumor suppressor commonly mutated in glioma. We have studied the pattern of deletion, mutation, and expression of MMAC1/PTEN in 35 unrelated melanoma cell lines. Nine (26%) of the cell lines showed partial or complete homozygous deletion of the MMAC1/PTEN gene, and another six (17%) harbored a mutation in combination with loss of the second allele. Mutations could also be demonstrated in uncultured tumor specimens from which the cell lines had been established, and cell lines derived from two different metastases from one individual carried the same missense mutation. Collectively, these findings suggest that disruption of MMAC1/PTEN by allelic loss or mutation may contribute to the pathogenesis or neoplastic evolution in a large proportion of malignant melanomas.  相似文献   

9.
10.
Loss of heterozygosity (LOH) at chromosome band 10q23 occurs frequently in a wide variety of human tumors. A recently identified candidate tumor suppressor gene, PTEN located on 10q23, is mutated in multiple advanced cancers. To explore whether PTEN is associated with human squamous cell carcinoma of the head and neck (SCCHN), DNAs from both normal muscle and tumor tissue in 19 SCCHN were used for detecting LOH at chromosome 10q23 and mutational analysis of PTEN by direct polymerase chain reaction (PCR)-DNA sequencing. LOH at 10q23 was identified in 6/15 SCCHN. Mutation of PTEN was identified in 3/19 SCCHN. Of these 3 patients, 2 had stage IV disease; the third patient, with recurrent, metastatic and stage III disease, showed a 36 bp germline heterozygous deletion within intron 7. Furthermore, a missense mutation at codon 501 (TCT --> TTT: Ser --> Phe) in exon 8 was also found in tumor from the same patient. Our results suggest that PTEN may play a role in the genesis of some SCCHNs.  相似文献   

11.
12.
The 10q25-26 region between the dinucleotide markers D10S587 and D10S216 is deleted in glioblastomas and, as we have recently shown, in low-grade oligodendrogliomas. We further refined somatic mapping on 10q23-tel and simultaneously assessed the role of the candidate tumor suppressor gene PTEN/MMAC1 in glial neoplasms by sequence analysis of eight low-grade and 24 high-grade gliomas. These tumors were selected for partial or complete loss of chromosome 10 based on deletion mapping with increased microsatellite marker density at 10q23-tel. Three out of eight (38%) low-grade and 3/24 (13%) high-grade gliomas exclusively target 10q25-26. We did not find a tumor only targeting 10q23.3, and most tumors (23/32, 72%) showed large deletions on 10q including both regions. The sequence analysis of PTEN/MMAC1 revealed nucleotide alterations in 1/8 (12.5%) low-grade gliomas in a tumor with LOH at l0q21-qtel and in 5/21 (24%) high-grade gliomas displaying LOH that always included 10q23-26. Our refined mapping data point to the 10q25-26 region as the primary target on 10q, an area that also harbors the DMBT1 candidate tumor suppressor gene. The fact that we find hemizygous deletions at 10q25-qtel in low-grade astrocytomas and oligodendrogliomas - two histologically distinct entities of gliomas - suggests the existence of a putative suppressor gene involved early in glial tumorigenesis.  相似文献   

13.
Extensive genomic deletions involving chromosome 10 are the most common genetic alteration in glioblastoma multiforme (GBM). To localize and examine the potential roles of two chromosome arm 10q tumor suppressor regions, we used two independent strategies: mapping of allelic deletions, and functional analysis of phenotypic suppression after transfer of chromosome 10 fragments. By allelic deletion analysis, the region of 10q surrounding the MMAC/PTEN locus was shown to be frequently lost in GBMs but maintained in most low-grade astrocytic tumors. An additional region at 10q25 containing the DMBT1 locus was lost in all grades of gliomas examined. The potential biological significance of these two regions was further assessed by examining microcell hybrids that contained various fragments of 10q. Somatic cell hybrid clones that retained the MMAC/PTEN locus have a less transformed phenotype with clones exhibiting an inability to grow in soft agarose. However, presence or absence of DMBT1 did not correlate with any in vitro phenotype assessed in our model system. These results support a model of molecular progression in gliomas in which the frequent deletion of 10q25-26 is an early event and is followed by the deletion of the MMAC/PTEN during the progression to high-grade GBMs.  相似文献   

14.
15.
Deletions involving chromosome 10q23 occur frequently in prostatic carcinomas. Recently, a novel tumour suppressor gene, PTEN, mapping to this interval, has been identified. Mutation or deletion of PTEN has been observed in a proportion of prostate cancer cell lines; however, primary prostate carcinomas have not been studied. We have investigated the involvement of PTEN in primary prostatic adenocarcinomas using a panel of 51 matched normal and prostate tumour DNAs. We first determined the proportion of tumours with allele loss at loci in 10q23 which span the region containing the PTEN gene. Our results show that LOH involving 10q23 is common in primary prostate carcinomas. Twenty-five of 51 (49%) tumours showed loss of heterozygosity (LOH) over the region spanning the PTEN locus. We next directly analysed the PTEN gene for mutations of the coding region using single strand conformation polymorphism (SSCP) and sequence analyses. Of those tumours with LOH, only a single tumour was found to carry a missense mutation in PTEN. No mutations in PTEN were identified in tumours without LOH. Our results suggest either that mutation of PTEN is a late event in prostate tumorigenesis, or that another tumour suppressor gene important in prostate cancer may lie close to PTEN in 10q23.  相似文献   

16.
Recently, a novel phosphatase designated PTEN/MMAC1/TEP1 and located on chromosome 10q23.3 has been implicated as a new tumor suppressor gene in human cancer. Allelic loss and mutation of this gene has been reported in epithelial derived tumors, including breast cancer and prostate cancer, and in glioblastoma multiforme. The present study was designed to evaluate the potential involvement of PTEN in the pathogenesis of lymphoid neoplasms. We analyzed 27 hematopoietic cell lines (representing a variety of lymphoid lineages), 65 primary lymphoid tumors (including 24 lymphoblastic leukemia/lymphoma [LBL], 30 large B-cell lymphoma [LBCL], 7 Burkitt's lymphoma [BL], and 4 anaplastic large cell lymphoma [ALCL]), and 25 nonmalignant lymph node controls. Gene deletion and gross rearrangement were evaluated using Southern blot analysis, and mutations were studied by polymerase chain reaction (PCR)-single-strand conformation polymorphism (SSCP) (PCR-SSCP) and sequencing. Six of 27 cell lines (22.2%) and 3 of 65 primary lymphomas (4.6%) contained alterations of this gene. A large homozygous deletion spanning exons 2 through 5 was detected in one LBL cell line, and two insertions potentially resulting in premature termination, were detected in a second LBL cell line. Nonconservative nucleotide variations were found in two other cell lines (one LBCL and one BL) and in one primary case of LBCL. In addition, two other cell lines (one BL and one myeloma) and two primary lymphomas, both LBCL, contained small deletions within intron 7. These deletions mapped to a poly-T-rich tract just 5' to the intron 7/exon 8 spice site. Their significance is unclear, as they may represent polymorphisms. Overall, our results suggest that abnormalities of the PTEN gene can contribute to pathogenesis in a small percentage of malignant lymphomas.  相似文献   

17.
Prostate cancer is a major cause of cancer death among elderly men in America, Europe, and Japan. However, the molecular mechanism of carcinogenesis is not yet well characterized. Frequent loss of heterozygosity (LOH) on chromosome 10q was reported in prostate cancer, and a candidate tumor suppressor gene, PTEN, was isolated on chromosome band 10q23.3. To investigate the genetic alterations of PTEN, we examined 45 primary prostate cancer specimens. LOH at the PTEN locus was observed in two (11.1%) of 18 tumors. However, no mutations were observed in any of the primary prostate cancers. These data suggest that mutation of the PTEN gene does not play a major role in prostate carcinogenesis of Japanese patients.  相似文献   

18.
Cytogenetic and loss of heterozygosity studies have suggested the presence of at least one tumor suppressor gene on chromosome 10 involved in the formation of high grade gliomas. Recently, the PTEN gene, also termed MMAC1 or TEP1, on chromosomal band 10q23 has been identified. Initial studies revealed mutations of PTEN in limited series of glioma cell lines and glioblastomas. In order to systematically evaluate the involvement of PTEN in gliomas, we have analysed the entire PTEN coding sequence by SSCP and direct sequencing in a series of 331 gliomas and glioneuronal tumors. PTEN mutations were detected in 20/142 glioblastomas, 1/7 giant cell glioblastomas, 1/2 gliosarcomas, 1/30 pilocytic astrocytomas and 2/22 oligodendrogliomas. No PTEN mutations were detected in 52 astrocytomas, 37 oligoastrocytomas, three subependymal giant cell astrocytomas, four pleomorphic xanthoastrocytomas, 15 ependymomas, 16 gangliogliomas and one dysembryoplastic neuroepithelial tumor. In addition, all tumors were examined for the presence of homozygous deletions of the PTEN gene; these were detected in 7 glioblastomas that did not have PTEN mutations. Therefore, PTEN mutations occur in approximately 20% of glioblastomas but are rare in lower grade gliomas. These findings confirm that PTEN is one of the chromosome 10 tumor suppressor genes involved in the development of glioblastomas.  相似文献   

19.
Lung carcinoids occur sporadically and rarely in association with multiple endocrine neoplasia type 1 (MEN1). There are no well defined genetic abnormalities known to occur in these tumors. We studied 11 sporadic lung carcinoids for loss of heterozygosity (LOH) at the locus of the MEN1 gene on chromosome 11q13, and for mutations of the MEN1 gene using dideoxy fingerprinting. Additionally, a lung carcinoid from a MEN1 patient was studied. In four of 11 (36%) sporadic tumors, both copies of the MEN1 gene were inactivated. All four tumors showed the presence of a MEN1 gene mutation and loss of the other allele. Observed mutations included a 1 bp insertion, a 1 bp deletion, a 13 bp deletion and a single nucleotide substitution affecting a donor splice site. Each mutation predicts truncation or potentially complete loss of menin. The remaining seven tumors showed neither the presence of a MEN1 gene mutation nor 11q13 LOH. The tumor from the MEN1 patient showed LOH at chromosome 11q13 and a complex germline MEN1 gene mutation. The data implicate the MEN1 gene in the pathogenesis of sporadic lung carcinoids, representing the first defined genetic alteration in these tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号